II. A Comparison of Platinum and Gas Thermometers, including a Determination of the Boiling-Point of Sulphur on the Nitrogen Scale. An Account of Experiments made in the Laboratory of the Bureau International des Poids et Mesures at Sèvres.

> By John Allen Harker, D.Sc., Formerly Bishop Berkeley Fellow of Owens College, Manchester, Research Assistant at Kew Observatory, and Pierre Chappuis, Ph.D., Savant Attaché au Bureau International des Poids et Mesures, Sèvres.

Communicated by the Kew Observatory Committee.

Received and Read June 15, 1899.

[Plate 1.]

Contents.

Page.
I. Introduction and historical résumé 38
II. Objects of the work 40
III. to XII. Discussion of different forms of platinum thermometer apparatus and construction of new resistance-bridge and accessories 41
XIII. Galvanometer 49
XIV. and XV. Platinum thermometers 51
XVI. Standardization of platinum thermometer apparatus 52
XVII. Calibration of the bridge-wire 52
XVIII. Determination of the coil-values 55
XIX. Progressive changes in coil-values 58
XX. Determination of the temperature-coefficient of the coils 59
XXI. Fixed points of the platinum thermometers 61
XXII. Heating effect of battery-current on the thermometer wire 61
XXIII. Determination of the centre of the bridge 62
XXIV. General considerations on the gas thermometer 63
XXV. Comparison of platinum thermometers with mercury standards 64
XXVI. Description of the gas thermometer 67
a. Reservoir 67
b. and c. Barometer and manometer 69
d. Measurement of pressure 70
e. Divided scale 71
XXVII. Zero apparatus 71
XXVIII. Steam-point apparatus 72
XXIX. Comparison-bath for range 80° to 200°. 73
VOL. CXCIV.-A 253.13.3.1900,
Page.
XXX. Preliminary determinations with gas thermometer with glass reservoir 74
a. Capacity of the reservoir. 74
b. Coefficient of expansion of "verre-dur" 74
c. Pressure coefficient of the reservoir 75
d. Determination of volume of "dead space" 75
e. Determination of the "index error" 77
f. Corrections of scale and vernier 78
XXXI. Calculation of the temperatures on the gas scale 78
XXXII. Corrections relating to the "dead space" 79
XXXIII. Method of preparing the nitrogen 80
XXXIV. Determination of the initial pressure 80
XXXV. Determination of the coefficient of expansion of nitrogen 82
XXXVI. and XXXVII. Comparisons between the platinum thermometers and the nitrogen thermometer up to 200° 85
XXXVIII. Comparisons between the platinum thermometers and the nitrogen thermometer between 250° and 460° 87
XXXIX. New gas thermometer with porcelain reservoir 89
a. Capacity of the reservoir. 90
b. Coefficient of expansion of porcelain 90
c. Pressure coefficient of the reservoir 92
d. Determination of the volume of the "dead space" 92
XL. First determinations with the porcelain gas thermometer. 93
XLI. Explanation of the tables of results 97
XLII. Determination of the boiling-point of sulphur 97
XLIII. Reduction of results to the normal scale 101
XLIV. Conclusion 104
Appendix I. Explanation of tables 112
Numerical results of comparisons 114
Tables for reduction of observations with platinum thermometers 131
Appendix II. Recalculation of the boiling-point of sulphur experiments 132

I. Introduction.

In a paper entitled "The Practical Measurement of Temperature," read before the Royal Society in 1886, Professor Callendar drew attention to the method of measuring temperature based on the determination of the electrical resistance of a platinum wire. He showed that the method was capable of a very general application, and that the platinum resistance thermometer was an instrument giving consistent and accurate results over a very wide temperature range.

Callendar pointed out that if R_{0} denote the resistance of the spiral of a particular platinum thermometer at 0°, and R_{1} its resistance at 100°, we may establish for the particular wire a temperature scale, which we may call the scale of platinum temperatures, such that if R be the resistance at any temperature T° on the air-scale, this temperature on the platinum scale will be $\frac{R-R_{0}}{R_{1}-R_{0}} \times 100^{\circ}$. For this quantity,

Callendar employs the symbol $p t$, its value depending on the sample of platinum chosen.

In order to reduce to the standard scale of temperature the indications of any platinum thermometer, it is necessary to know the law connecting T and $p t$. These are, of course, identical at 0° and 100°, but the determination of the remainder of the curve expressing the relationship between them is a matter for experiment. Our present knowledge of this relation depends mainly on the investigations of Callendar and Griffiths.

The following is a list of the principal papers published bearing on the subject of platinum thermometry :

The work of Callendar established for a particular sample of pure platinum the relation

$$
d \equiv \mathrm{~T}-p t=\delta\left[\left(\frac{\mathrm{T}}{100}\right)^{2}-\frac{\mathrm{T}}{100}\right]
$$

over the range 0° to 600°. For Callendar's wire the value of δ was about 1.57 .
Subsequent experiments by Callendar and Griffiths showed that the values
of δ for the different samples of platinum they examined varied greatly with their purity, yet, provided that the percentage of impurity were small, the formula given above held true. They found from their experiments that the T - $p t$ curve was always a parabola, and that, therefore, to establish the whole curve showing the divergence of the two scales, it was sufficient to know d for three fixed points. For two of these, viz., 0° and $100^{\circ}, d$ is by definition zero. For the third point, for reasons indicated in their paper, Griffiths and Callendar chose the boiling-point of sulphur, and subsequently made a new determination of this point by an air thermometer, finding as their most probable value $444^{\circ} \cdot 53$, the pressure being 760 millims. This value, which is nearly four degrees lower than that previously obtained by Regnault, is the one which has been generally adopted in work with the platinum thermometer.

As further evidence in confirmation of this conclusion Griffiths points out that, if this number be taken for the boiling-point of sulphur in the calculation of the values obtained by him for the boiling and freezing points of a number of substances on which he experimented, the results for most of the substances concord better with their accepted values as determined by other observers, than if Regnault's value, $448^{\circ} \cdot 34$, be adopted.

Many of these accepted numbers quoted in Grifftths' paper are given to hundredths of a degree, but closer examination of the original papers in most cases reveals the fact that the reductions to the normal scale and the various corrections of the thermometers employed, if made at all, are, to say the least, very uncertain. Further, we see no a priori reason why, in Griffiths' experiments, the results with certain of the substances employed should be rejected from consideration, as there does not appear sufficient ground for supposing that the experimental error in these cases was higher than the average.

Substantially then our knowledge of temperatures, deduced by means of the platinum thermometer, depends solely on the correctness of the conclusions of Griffiths and Callendar:-
(1) That the boiling-point of sulphur under 760 millims. pressure is $444^{\circ} 53$.
(2) That the curve representing the divergence of the platinum and air scales is a parabola.

II. The Investigation for the Kew Commityee.

In recent years the platinum thermometer has been employed by various observers, and their experience has tended to confirm the view that it could be relied upon to give constant indications at a given temperature. It consequently appeared to the Kew Observatory Committee that it might be possible to use this instrument as a means of referring measurements of temperature to the scale of the gas thermometer adopted as an International standard by the Comité International des Poids et Mesures, and thus to extend their means of accurately testing thermometers sent to
them for verification at temperatures outside the range 0° to 100°. With this view they deemed it desirable to obtain an independent investigation into the principles and methods of platinum thermometry, and they consequently procured a complete equipment of the necessary apparatus, which was installed at the observatory under the supervision of Mr. Griffiths in a special building. As the general results of the experiments made with this apparatus seemed promising, the Kew Committee approached the Comité International des Poids et Mesures, with a view to securing their co-operation, and ultimately it was arranged that a direct comparison, extending over as wide a range as possible, should be made between some platinum thermometers belonging to Kew and the Standard instruments at the International Laboratory at the Pavillon de Breteuil, at Sèvres, near Paris. The present paper is the outcome of this investigation, in which it may be understood that one of us (C.) is responsible for the gas and mercury thermometry involved, while the working of the platinum thermometers devolved on the other (H.). In it will also be found an account of the means by which the range of the gas thermometer employed was extended upwards from 200°, the limit of the Bureau's previous experiments, for the purpose of this investigation.

III. The First Form of Platinum Thermometer Resistance-Bridge.

As a full account of the first platinum thermometer apparatus acquired by Kew Observatory has been published by Griffiths ('Nature,' Nov. 14, 1895), under whose supervision it was standardized, it is unnecessary here to give more than a general description of its chief features. A diagrammatic representation of the connections is given in fig. 1 .

Fig. 1.

$$
\begin{array}{cl}
\text { Q } & \text { Resistances of bridge. } \\
\text { R and S } & \text { Proportional coils. } \\
\text { P } & \text { Thermometer spiral. }
\end{array}
$$

VOL. CXCIV.-A.

C Compensator of thermometer.
AB Bridge-wire.
G Galvanometer.

Here R and S represent the proportional coils of about five ohms each, adjusted to exact equality. P is the thermometer coil connected by two long flexible copper ends to the box terminals P_{1} and P_{2}.

The wires in the stem of the thermometer leading to the coil are of thick platinum, the coil itself being of a very pure sample of platinum 006 inch in diameter. Down the stem run also a second pair of leads made as similar as possible to the coil leads, but connected together at their lower extremities and having no contact with the coil. This loop, connected at $\mathrm{C}_{1} \mathrm{C}_{2}$ in the figure in the opposite arm of the bridge to the thermometer itself, serves to compensate the changes in resistance of the thermometer leads proper, due to variations of stem temperature. The four copper wires joining $\mathrm{P}_{1} \mathrm{P}_{2}, \mathrm{C}_{1} \mathrm{C}_{2}$ to the thermometer are plaited together into a single cable, so that temperature changes throughout their length may affect them all equally.

Q represents the nine platinum-silver resistances of the box connected to one another in series, the lowest coil having a resistance of 5 box-units (1 box-unit $=$ $\cdot 01 \mathrm{ohm}$), and the rest forming a series $10,20,40,80$, up to 640 units the largest coil. An extra coil of 100 units is used to determine the fundamental interval of the usual type of thermometer, whose change of resistance between 0° and 100° is 100 box-units, i.e., 1 ohm.

A platinum silver bridge-wire, AB , provided with a scale of millimetres, furnishes the means of balancing exactly any resistance of P. A special form of slider is employed for the contact between the bridge-wire and a precisely similar wire stretched parallel to it, connected to the galvanometer. The exact position of the transverse wire forming the contact-piece is indicated by a vernier by which 01 millim. may be estimated. This symmetrical arrangement of two similar wires is found to diminish the thermoelectric effects at the movable contact.

Coils of 20 and 100 ohms are provided as resistances in the battery circuit, and also a "tenth" shunt for the galvanometer.

The top of the resistance-box is of a special quality of marble of good insulating properties.

The whole is enclosed in a double-walled tank holding a considerable mass of water, which is kept at a constant temperature near 20°, by a regulator controlling a small gas flame. A delicate thermometer suspended in air in the interior of the box indicates the coil-temperature, and the whole of the upper surface of the box is protected against radiation and air currents by a glass cover similar to a balance case.

IV. Experiments with the First Apparatus.

From the time of the acquisition of this apparatus determinations were repeatedly made of the constants of each of the platinum thermometers, in order to test the permanence of the whole arrangement under ordinary working conditions; also to ascertain how the accuracy obtained was influenced by alterations in the external
conditions of experiment, such as changes in the laboratory-temperature, the different treatment of the apparatus by different observers, \&c.

These trials, which were continued over a considerable period, showed that one of the disadvantages of this form of apparatus is the almost inevitable difference of "lag" between the mercury thermometer employed to indicate the coil-temperature, and the platinum-silver coils themselves, which in this case hang loosely in air. From this cause, especially when the box-temperature is changing rapidly, some uncertainty as to the coil-temperatures is introduced. During the winter, when the temperature of the laboratory often fell very considerably during the night, and also in summer when it rose to over 20°, the temperature of the coil-space changed rapidly during the daytime, although the regulator nevertheless maintained the water in the tank very near 20° throughout, showing that the protection afforded by the glass cover of the resistance-box was insufficient under the prevailing conditions. The measurements made showed conclusively that in this case the coils followed temperature changes faster than the mercury thermometer selected to indicate the coil-temperature.

The temperature-coefficient of the alloy of which the coils are constructed is 00026 and that of the platinum wire of the thermometers is 00386 ; if then we wish to determine a platinum-temperature to $\cdot 001^{\circ}$ (whatever the resistance of the thermometer chosen) we must know the coil-temperature to $\cdot 015^{\circ}$. Therefore, unless great precautions be taken with the mercury thermometer, it is difficult to see how the measurements of coil-temperature can be sufficiently trustworthy.

Griffiths in his later experience has got rid of the first-mentioned difficulty while retaining platinum-silver as the resistance metal, by immersing the coils in a wellstirred bath of highly insulating oil, into which the mercury thermometer is placed directly, thus rendering the measurement of the coil-temperature much more certain.*

V. Construction of the New Apparatus.

As it was anticipated that the experiments at Sèvres might occupy some time, and it was not thought advisable that the Observatory should be deprived altogether of the use of platinum thermometers for a long period by this apparatus being taken to France, a new resistance-box was ordered specially for this work. The construction of this box was entrusted by the Committee to Messrs. Crompton and Co., Limited, and its behaviour has on the whole been very satisfactory.

In view of the fact that it was not easy to maintain the platinum-silver coils at a sufficiently uniform temperature winter and summer by any simple means, and in view of the difficulty previously mentioned as to the indication of the true coiltemperature with sufficient accuracy by a mercurial thermometer, it was decided in

[^0]this second apparatus to obviate the necessity of very accurate measurement of the coil-temperature by using one of the new alloys of very small temperature-coefficient, manganine being the one chosen. The expediency of this change was subsequently emphasised by the fact that we found it was inadvisable to artificially heat the room at Breteuil in which the comparisons were made, on account of the uncertainties

Fig. 2.

attending the measurement of the temperatures of the various mercury columns of the gas thermometer. During the year and a-half the experiments lasted, the room temperature varied from about 4° to 23°, which would have rendered accurate artificial control of the box-temperature extremely difficult.

Since in the first resistance-box the thermoelectric effects between the various wires and terminals in the circuit (in which several different metals are used) were
sometimes considerable, copper was substituted throughout for brass in the new box, the only metals in circuit being copper and manganine. For the platinum-silver bridge-wire was substituted a manganine strip heavily gilt, placed on edge and stretched between two adjustable clips. The slider is provided with a fine adjustment, which can be manipulated from the outside of the box, without risk of heating the galvanometer-contact by repeatedly approaching it with the hand. As in Mr. Griffiths' latest form, the terminals project outside the glass case. The top of the box is formed of a heavy slab of white marble 75 centims. long, 30 centims. wide, and 3 centims. thick. For the ordinary form of plug-contacts are substituted heavily gilt forks of forged copper, which can be clamped by powerful steel screws over tongues projecting upwards from the blocks to which the coils are fastened. A general plan of the resistance-box is shown in Plate 1 and the details of one of the contacts in fig. 2.

VI. The Resistance-coils.

The general scheme of the box connections is almost the same as the one previously described, and may be traced in fig. 1. For the winding, fixing, and annealing of the manganine coils the method described in the official publication of the PhysikalischTechnische Reichsanstalt at Charlottenburg was carefully followed. The specimen of wire used was selected after various tests from several furnished by Messrs. W. T. Glover and Co., of Salford, and was double silk covered No. 26 S.W.G. The diameter of several pieces cut from different parts of the bobbin only varied within very narrow limits. In order to simplify the application of the temperature correction, the same wire was employed for all the coils except the two lowest. These were of strip manganine, and being originally cut off too wide, could be adjusted till accurate by clipping the edge with shears.

VII. Coil Values adopted.

In the Callendar-Griffiths resistance-boxes the coils are arranged on the binary scale, and the value of each is determined in terms of the sum of those below it together with a certain length of bridge-wire. Although Mr. Griffiths gives evidence for the utility of this arrangement in general work, it was thought more important, for the purposes of this research, to have several independent checks in the determination of each coil-value, than that the maximum resistance, measurable with a given number of box-coils, should be as high as possible.

The thirteen coils were therefore arranged as follows, the values being expressed in ohms :-

40		20		10		4		3		2		1
A		B		C		D		E		F		G
	$\cdot 02$		$\cdot 05$		$\cdot 1$		$\cdot 2$		$\cdot 3$		$\cdot 4$	
	N		M		L		K		J		H	

Several of these values are the ordinary ones adopted for standard resistances, so that with a suitable arrangement comparisons with a standard could be made from time to time. Coils of these values are also much easier to measure off accurately than the larger multiples of 01 ohm on the binary scale. We will revert to this question as to the best arrangement of coil-values in the discussion of the method of standardization adopted.

The resistance box is fitted with three interchangeable bridge-strips of different resistances, on which a change of 01 ohm in the box-coils causes a displacement of the slider, to restore the balance, of 10,5 , and 2 centims. respectively. The slider is fitted with a vernier giving $\frac{1}{20}$ th millim. directly, it being considered unnecessary, perhaps indeed impossible, to determine the position of the knife edge forming the contact to a greater accuracy than this, without taking extraordinary precautions with the scale, the slider, and the bed in which it travels.

With the three bridge-strips the resistance corresponding to a movement of one millim. is $\cdot 0001, \cdot 0002, \cdot 0005 \mathrm{ohm}$, respectively.

The strip of medium resistance was the one employed exclusively during this research.

The slider is of the form employed on the best potentiometers, and can be displaced either by hand or by a fine-adjustment screw with large milled head, projecting beyond the outside of the case. This screw moves longitudinally a rectangular frame carrying the slider ; this frame is also capable of lateral movement in the massive brass casting which surrounds the bridge-wire, and tends to protect it from injury, and to equalise its temperature from end to end. The return contact from the slider to the galvanometer was originally made by means of this movable frame, but from some unexplained cause, apparently not thermoelectric, this led to unsteadiness of the galvanometer zero.* Coupling the various parts of the framework together electrically by flexible copper wires did not remove the difficulty, and ultimately it was found best to have a silk-covered return lead attached to the spring contact on the slider, and to cut off the frame from all electrical connection with the apparatus.

The marble slab forming the top of the resistance-box was supported from the inside of the tank by an iron framework, carrying racks for the coils, the sides being left quite open, and all the coils easily accessible for inspection at any time. The whole was placed in a very heavy double-walled copper trough holding about 50 litres of water, and was covered by a doubly-hinged lid, glazed with thick bevelled plate

[^1]glass. Provision was made in the outer space of the tank for a regulator and heating arrangement underneath. This was, however, not used during the present experiments. Suitable thermometers indicated the temperature of the water in the outer tank, and two sensitive ones, divided to tenths of a degree with thin bulbs and their stems bent at right angles, indicated the temperature of the internal coil-space.

IX. Galvanometer Shunts and Battery Resistances.

The resistance-box was provided, as in the Callendar-Griffiths type, with a set of galvanometer shunts and a series of battery resistances of $20,50,100$, and 500 ohms. It was afterwards found a great advantage to have a more exact adjustment of the battery current, and for this purpose a subsidiary three-dial box, working up to 1,000 ohms, was provided.

Previous experience at Kew had shown the occurrence of differences in the point of balance, according as the battery-current was in one direction or the other; it was found that the difference between the readings with the current in the two directions generally increased gradually during the first quarter of an hour on commencing the observations, and was greater the greater the intensity of the battery current. In order to be able to study, and if possible to eliminate this cause of uncertainty, we placed in the battery circuit of the new apparatus a high-insulation reversing switch. The working of this switch was at first unsatisfactory, but was subsequently perfected by short-circuiting the rubbing contacts at the pivots by flexible brass strips, and covering the five contact studs with thin platinum plates.

X. Battery Power Employed.

The battery used throughout the experiments consisted of two dry-cells of the Obach type, obtained from Messrs. Siemens; we ascertained that the E.M.F. of the two cells was practically constant throughout and about $2 \cdot 8$ volts, and that the internal resistance of the two in series did not rise to more than 1 ohm, changing by a quantity quite negligible in comparison with the large resistance always added in the battery circuit.

XI. Thermoelectric Key.

For the completion of the different circuits a Griffiths' thermoelectric key was employed, as in the first Kew apparatus. The essential feature of this key consists in the addition to the ordinary form of double bridge-key of a lever so arranged that when the key is released the galvanometer circuit remains made. Thus a simple depression of the key first breaks the circuit of the galvanometer, then makes that of the battery, and finally remakes the circuit of the galvanometer.

The key we used was somewhat modified from the original pattern, which, being
mounted on wood, was not found to be quite perfect as regards insulation. The new key, which along with the thermometers and nearly all the accessory apparatus was obtained from the Cambridge Scientific Instrument Company, Limited, is shown in fig. 3, and in the general plan of the auxiliary apparatus (fig. 4). It is provided with

Fig. 3.

Fig. 4.

ebonite pillar insulation, and the four levers are rearranged in their order, the two forming the galvanometer-contacts being supported from the same pillar one under the other. All the contacts in the key are of platinum. An adjustable steel spring under the topmost lever helps to hold it up against the contact screw above, thus ensuring good contact in the galvanometer-circuit when the key is released.

XII. Accessories to the Resistance-Bridge.

The battery, reversing-switch, key, and external resistances were all enclosed in a wooden case provided with a glass lid, the necessary handles for the adjustments and for working the keys, projecting through the sides, and the whole being kept nearly
air-tight by suitable protections. This seemingly unimportant detail we found to be a great advantage, as in the damp weather, experienced during part of the experiments, the insulation of exposed parts always required considerable attention. The battery was insulated from the wooden case by gutta-percha strip, and after this was added, the insulation resistance of the whole apparatus, when all was kept dry, was practically perfect.

XIII. Galianometer.

For the first experiments the galvanometer employed was one of the pattern described by Dubois and Rubens in 'Wied. Annalen,' vol. 48, p. 236, lent to us by Professor Schuster. This is a Thomson four-coil instrument with connections so arranged that its bobbins may be coupled to give an internal resistance of 80,20 , or 5 ohms. The magnet system and mirror weighed together 0.2 gram. The deflections were observed from about three metres distance by a large Steinheil telescope. Much trouble was experienced in finding a foundation for the galvanometer sufficiently free from vibration. After several unsuccessful experiments in which we attempted to insulate the galvanometer with rubber blocks, a special pillar was erected independent of the floor. We found, however, that, even when resting on this, the vibration of the magnet-system, caused by heavy traffic on the Versailles road, was sufficient at intervals to prevent any satisfactory observations being made. At this juncture Professor Carey Foster was appealed to, and through him Mr. R. K. Gray, of the India-rubber, Gutta-percha, and Telegraph Works Company, of Silvertown, very kindly came to our aid by sending us a reproduction of an arrangement he had employed at the works to cut off vibrations from delicate instruments. It consisted of a brass plate forming a platform from which the galvanometer is suspended, the whole being slung by long india-rubber tubes from a wall-bracket above. To diminish the effect of air currents we added a damping arrangement consisting of a vertical metal cross with attached horizontal vanes, plunging into a vessel standing on the concrete pillar and containing a thick oil. The galvanometer and suspension were also completely surrounded by a paper screen extending upwards to the ceiling, provided with suitable openings for making the adjustments.

The india-rubber suspension arrangement, when once the tubes were properly stretched, worked perfectly satisfactorily till the winter, when, presumably under the influence of the low temperature of about 4° or 5°, such a change took place in the elasticity that we were obliged to seek a substitute for the india-rubber, less influenced by climatic conditions.

We at length managed to construct from steel wire, 1 millim. in diameter, long spiral springs of the requisite strength, which have served the purpose admirably, and at the same time have shown a comparatively small variation of elasticity with temperature. The arrangement of the suspension in its modified form is shown in figs. 5 and 6.

VOL. CXCIV.—A.

With the comparatively heavy magnet-system of this first galvanometer, we were obliged, in order to obtain the requisite sensibility, to work with a relatively long time of vibration, which was not convenient for rapid work, and it was ultimately found necessary to so modify our galvanometer that the necessary sensitiveness should be obtained with a time of swing not exceeding six or seven seconds. We therefore had recourse to the ingenious type of magnet-system devised by M. Brocs, of the Ecole de Médecine, Paris, and described by him in the 'Journal de Physique,' February, 1897. In its latest form this consists of two vertical hollow magnets, having at their middle points a north and south pole respectively. When the two similar but oppositely magnetised needles are fixed strictly parallel to one another, the system thus formed is perfectly astatic in a uniform field, since the strength of the pole at the centre of each magnet is equal to the sum of the poles at its ends, and further the astaticism is not affected by even complete loss of magnetism in one of the magnets. M. Broca was kind enough to lend us a galvanometer of the type described in his paper, and a magnet-system made by himself. This instrument is the one shown in the sketches of the galvanometer and suspension in figs. 5 and 6. We had not the means of accurately measuring the sensitiveness of this instrument by one of the ordinary processes, but ascertained that, with a time of swing of five seconds, the scale deflection, for a want of balance of the bridge corresponding to $\cdot 001^{\circ}$, was about 0.5 millim. This was with a system carrying a mirror large enough to give a bright image in the telescope, readable without difficulty in broad daylight.

XIV. Thermometer Leads.

The thermometer leads were of stranded copper equal to No. 17 S.W.G., and about seven metres long. The resistance of the four separate wires was carefully equalised before fixing on the copper end-pieces used to make the contacts, each loop, $\mathrm{P}_{1} \mathrm{P}_{2}$, $\mathrm{C}_{1} \mathrm{C}_{2}$, having a resistance of 15 ohm at 16°. After nearly two years continual use the two loops differed in resistance by $\cdot 0003$ ohm, a change of only about one-fifth per cent. of the whole.

The connections between the resistance-box leads and thermometer were made by means of the special alloy employed by Mr. Griffiths, and from our own experience we can strongly recommend these joints as very trustworthy and easy to make.

XV. The Platinum Thermometers.

The resistance of all except one of the platinum thermometers belonging to the original Kew installation was such that their change of resistance between 0° and 100° was almost exactly one ohm. Though convenient for high range work, this type of thermometer is hardly suitable for measurements of the highest accuracy at lower temperatures, in consequence of the relatively considerable effect on the results of
small variations in the plug-contact resistances. On this account two new thermometers of higher resistance were ordered from the Cambridge Instrument Co. ; their fundamental intervals were five and ten ohms respectively. They are designated in this paper K. 8 and K. 9.

Owing to the shape of the various baths in which the comparisons with the platinum thermometers were made, and more especially to the difficulty of keeping dry the air within the tubes of thermometers of the old form, we were obliged to modify the form of the "head" of these principal thermometers.

In the reconstruction the whole thermometer was arranged so as to be practically air-tight, and the contacts were rearranged in such a manner that although the four wires all left the thermometer at the same side, yet the "coil" and "compensator" arms were perfectly symmetrical. At the same time the number of contacts where thermoelectric effects could arise was reduced as far as possible, by suppressing the brass terminals and making the connection between the platinum leads and the copper fusible metal cups directly by stout copper wires, all joints being made quite secure with hard solder. Though this form of thermometer-head is a little more difficult to construct, we find when the four contact cups are surrounded by a thin shield of polished metal to keep off air-currents, that the thermo-effects, almost invariably present to some extent in the old form of thermometer, especially when rapid temperature changes are progressing, are almost entirely absent. Another feature is the readiness with which the glass tube can be freed from internal moisture by simply

Fig. 7.

connecting the small stopcock on the ebonite plate alternately to a vacuum pump and to an arrangement for supplying dry air, while the whole thermometer is at a high temperature. This we find to be of great importance for accurate work below 100°.

A sketch of the thermometer in its improved form is given in fig. 7.

XVI. Standardization of the Resistance-Box.

The standardization of the resistance-box consisted in the determination :-
(1) Of the calibration corrections of the bridge-wire ;
(2) Of the values of the resistance coils in terms of one another ;
(3) Of the temperature-coefficient of the coils.
XVII. Calibration of the Bridge-Wire.

As has previously been mentioned, the cylindrical bridge-wire employed in the

Callendar-Griffiths box was replaced by a manganine strip, cut from a large sheet. Although this strip had been carefully adjusted by filing to a very fairly uniform resistance along its whole length, yet, from the method of its construction, we anticipated the possibility of there being in some places more sudden variations of resistance than were likely to occur in a wire of a hard material like platinum-silver or platinum-iridium carefully drawn down to a certain diameter. We determined therefore to substitute for the usual Gay-Lussac calibration a more complete one with several different "columns." As it was not always possible to take vernierreadings with the slider close up to the ends, we decided to employ only the middle 48 centims., and to obtain the calibration corrections for each 2 centims. over this range. We are indebted to Dr. Benoit for his advice on the best method to adopt. He recommended that the whole length should be divided into two parts, and that for each part a " complete" calibration should be made for every 4 centims., involving the employment of "columns" of $20,16,12,8$, and 4 centims., and that afterwards the intermediate 2 centim. points should be determined by subdivision of each interval of 4 centims. into two parts. The necessary conversions of the separate corrections found to one system were made exactly as in the calibration of a mercury thermometer or a divided scale.

Fig. 8.

The method adopted for making the necessary measurements is described in a paper presented to the Royal Society in 1896 by one of us; the scheme of the connections is shown in fig. 8.

Between the terminals $\mathrm{P}_{1} \mathrm{P}_{2}$ of the resistance-box is connected an auxiliary adjustable resistance, having four sets of coils made of the same sample of manganine as those of the bridge proper, and also a small U-shaped trough containing mercury. By means of this appliance, a plan of which is shown in fig. 9, the resistance between

the terminals $\mathrm{P}_{1} \mathrm{P}_{2}$ can be quickly adjusted to any value between zero and 100 ohms. In the opposite arm of the bridge, between the terminals $\mathrm{C}_{1} \mathrm{C}_{2}$, are inserted a fixed resistance of 0.1 ohm and the calibrating apparatus. This consists of two massive copper blocks of rectangular form, mounted on an insulating base, each pierced by two holes about a centimetre in diameter, which are well amalgamated and partly filled with mercury. Into one pair of holes are inserted two round copper pillars, across which is soldered a piece of thin manganine strip, and into the other pair of holes the lower ends of a thick U-shaped copper rod. A sketch of the calibrator is given in fig. 10.

A number of strips of different resistances, each mounted between copper pillars as shown, are first prepared, the values chosen being equivalent to $2,4,8,12,16,20$, and 24 centims. movement of the slider. The calibration is commenced by placing the contact-maker to the division 24 to the left, and one of the strips in position on the calibrator. The resistance in the opposite arm of the bridge is then adjusted so that no galvanometer deflection is obtained, and the exact position of the slider noted. The manganine strip remaining untouched, the copper short-circuiting piece is now placed across between the two remaining mercury cups, and the slider is then moved to the right till the balance is again restored. In order to eliminate the effects of any gradual temperature changes, the process is repeated, the readings being made in the reverse order, a similar pair of readings being made for each successive position along the bridge-wire. The results of several series of observations made on different days with each strip are then combined, and the whole set treated precisely as an ordinary calibration of a length or volume, and the curve of corrections prepared.

It was interesting to compare the results of the complete calibration with those deduced from the observations with the two-centim. column alone, and from two test calibrations made by means of the coils M and N . The general agreement of the different results was found to be satisfactory.

XVIII. The Resistance Coils.

The manganine coils were annealed, in accordance with the recommendations of the German Reichsanstalt, by heating them to about 140° for some time and allowing them to cool slowly. This was done in a closed electrically heated space in which the temperature could be regulated at will, and the cooling could be made as slow as desired.

The ends of each coil were hard-soldered to copper tags of rectangular form previous to the final annealing, these tags being afterwards firmly fastened by ordinary solder to the stout tinned copper leads connected to the contact-blocks.

The coils were wound on glass tubes 3 centims. in diameter, which were fastened by metal strips to wooden cross-pieces supported from the iron framework of the resistance-box. These tubes were coated with three thin layers of shellac varnish
before the coils were wound, and after the winding the wire itself was also well varnished to improve the insulation and to protect it from oxidation during the annealing.

We understand that the standard manganine coils issued by the Reichsanstalt are not tested till a year after their construction, but that after this lapse of time the gradual changes they exhibit are very small.

In our case we were however obliged to begin work with the resistance-box before the coils had been properly aged, and therefore were not surprised at alterations in their values, particularly during the first few months.

We regret that at the commencement of our work we had not at our disposal the means of comparing the coils with an invariable standard, but could only obtain their relative values in terms of the mean bridge-wire unit, which was even more likely to change slightly than the coils themselves; on this account we are unable to give details of the progressive alterations in their absolute values, and can only indicate the means we adopted to prevent these changes influencing the accuracy of our temperature-measurements. The changes were, as was to be expected, most appreciable at the beginning of the work. The first standardization was made as soon as the apparatus was got into order and fitted up at Breteuil, and immediately following this came the comparisons of K. 8 with the mercury thermometers. As soon as this series of comparisons was completed a second standardization was at once made. The individual observations of the thermometric fixed points and comparisons were then reduced with both the earlier and new coil-values. At a later stage it was found that, although the absolute value of the mean bridge-wire unit had slightly altered, yet the values of the box coils relatively to one another, with the exception of one of the very low resistances constructed of strip manganine, had not changed by an amount large enough to make the two determinations differ materially. It was easy to allow for such small variations as did occur by taking into consideration the date of each experiment and assuming that the change between the two standardizations was proportional to the time which had elapsed since the first.

Not counting a preliminary series of observations, four complete standardizations were made in all during the course of the work with the thermometers, and we think that no serious errors were introduced into the results by the alterations in the relative values of the resistance-coils.

Further particulars as to the changes in the values of the different coils are given on p. 58 after the description of the method adopted for the standardization.

For the comparison of the coil-values with one another the following plan was adopted. Firstly, the values of the smaller coils M and N were determined directly in terms of the bridge-wire by the same process as was employed in the calibration. Next, each higher coil in turn was balanced against the adjustable manganine resistance previously described, which in each case was so adjusted that the position of the contact-maker on the bridge-wire was in the neighbourhood of the zero of the
scale. The coil in question was then changed for some combination of those of lower values giving the same (or very nearly the same) nominal resistance, and the outside resistance remaining untouched, the contact-maker was again adjusted to equilibrium.

The distance between the first and second positions of the slider is a measure of the difference between the two sets of coils, expressed in mean bridge-wire divisions. The process being repeated for all the coils and the different combinations equivalent to each, the results are collected into a set of equations of the following form :-

$$
\begin{array}{rlrl}
\mathrm{A}-\mathrm{B}-\mathrm{C}-\mathrm{D}-\mathrm{E}-\mathrm{F}-\mathrm{G} & & =a_{1} \\
\mathrm{D}-\mathrm{E} & \& \mathrm{c} . & \\
\mathrm{D}-\mathrm{E} & & & =a_{4} \\
& & & =a_{5} \\
& & \& \mathrm{H}-\mathrm{J}-\mathrm{K}-\mathrm{L} & \& \mathrm{c} .
\end{array}
$$

As previously mentioned, the scheme of coil-values adopted was such as to permit of independent values for most of the coils being obtained in a single standardization, the difference between these several values being a measure of the accuracy obtained.

For the standardization we adopted the same scheme in the four sets of determinations of the coil-values taken at different times throughout the research. We ascertained during the experiments, but too late to make any change, that the values chosen for the higher coils were not such as were best adapted for giving a number of inter-dependent relations, and on this account the control only extended upwards to the fourth largest coil.

We give below the residual errors obtained in one of the standardizations by substitution of the values found by least squares for each coil in the respective equations of condition, suppressing the first three coils for which the control was absent. \dagger

[^2]

The system of about 44 equations of condition to determine the unknowns, given by the different direct comparisons, can either be divided into groups and solved thus, or may be solved as a whole, which, if Gauss' method be followed, can be done without undue labour, as the coefficients of the various terms remain small whole numbers till near the end of the resolution.

VOL. CXCIV.--A.

It will be observed that the largest residual is only 0.0158 mean bridge-wire unit, or about 0.00003 ohm , showing that when all the contacts are kept clean the uncertainties due to variability of the contact-resistance are exceedingly small, and that the form of contact-maker employed is extremely constant in its action.

The largest residual observed in any standardization was 0.00008 ohm, and the average was about a quarter of this amount.
XIX. Changes in the Resistance-Coils.

In order to give an idea of the magnitude of the changes which took place during the work, we give in the following table the values obtained for the wire coils in the first and last standardizations expressed in mean bridge-wire units. In the fifth columu is shown the change which took place in each coil, not taking into account the variation of unit. The figures were obtained by dividing the values in the fourth column for the several coils by the corresponding values in the third. The absolute magnitude of the changes cannot be deduced with certainty, but from other experiments made by one of us with manganine wires it seemed probable that the total change in any coil is in reality a combination of two distinct effects, the one being a change in the specific resistance of the wire throughout its entire length, and the other an effect confined to a small length at each end, which was very strongly heated during the operation of hard-soldering it to the copper tags.

Examination of the appended results shows that the change in the value of the lower coils is relatively much greater than in the case of the higher ones. This is in accordance with what we should expect, if the statement above were true, and both changes tended in the same direction.

	Nominal value in ohms.	Value No. 1.	Value No. 4.	$\frac{4}{1}$.	
A	40	18761•17	$18763 \cdot 71$	1.00014	
B	20	$9391 \cdot 12$	$9393 \cdot 25$	$1 \cdot 00023$	
C	10	$4697 \cdot 67$	$4698 \cdot 80$	1.00024	
D	4	1872.63	$1874 \cdot 01$	1.00074	Wound on glass tubes.
E	3	$1406 \cdot 88$	$1407 \cdot 39$	1.00036	
F	2	$939 \cdot 276$	939.562	$1 \cdot 00030$	
G	1	$462 \cdot 770$	463.047	1.00060	
H	$\cdot 4$	192.719	$192 \cdot 880$	1.00083	
J	$\cdot 3$	$146 \cdot 367$	$146 \cdot 610$	1.00166	Hanging free
K	$\cdot 2$	$99 \cdot 444$	$99 \cdot 616$	$1 \cdot 00172$	$\}$ in air.
L	$\cdot 1$	$48 \cdot 498$	$48 \cdot 627$	1.00265	

XX. Determination of the Temperature-Coefficient of the Coils.

Preliminary determinations had shown that the temperature-coefficient of the wire used for the coils was extremely small, and had we been able to keep the box-temperature anywhere near constant we would hardly have needed to take it into account at all. As, however, considerable variations of the temperature of the room were inevitable, as previously explained, a method had to be devised to determine the coefficient with considerable accuracy. It had been previously found by one of us that the annealing process, to which the wire must be subjected to minimise subsequent time-changes in its resistance, has an appreciable effect on the temperature coefficient of the wire. In nearly all the specimens examined, the point where the characteristic change in sign of the temperature-coefficient takes place was displaced so as to occur at a lower temperature.

In view of uncertainties in the method of subjecting a sample of the wire to treatment exactly similar to what the coils themselves had received, and determining the coefficient of this piece the process usually followed-we attempted to measure directly the actual coefficient of the coils themselves in situ.

To do this we first tried a method consisting in the determination of the apparent value in box-units of a resistance kept at constant temperature, while the boxtemperature was varied between that of the tap-water circulated through the outer tank and a maximum of about 35°. During these determinations every care was taken that the temperature of the coils as registered really represented their mean temperature at the time. Without going into details as to how this was attained by keeping up a continuous circulation of hot or cold water in the outer tank, and other precautions, we may say that the results of the measurements made were somewhat unsatisfactory, and the reason of this was traced to a curious and, we believe, not previously observed behaviour of the alloy in not taking up instantaneously the resistance corresponding to a new temperature to which i may be subjected, especially when
cooling. We found that if the results of the separate determinations of the value of a constant outside resistance made with a series of steady box-temperatures with temperature rising be plotted, along with those of a series similar in every respect but with the temperature falling, the two do not overlap but form a loop. After a determination commenced at about 15°, during which the resistance-box was heated to 31° and allowed to cool, the whole temperature change occupying about nine hours, the coils did not return to their original resistance at 15° till they had been at this temperature about three days. We satisfied ourselves that this was due to a real lag. in resistance and not in the indications of the box thermometers. The whole hysteresis effect is, however, small, and is quite imperceptible if the temperature changes are very slow, like the variations of laboratory temperature to which the box was ordinarily subjected. We may say that the temperature coefficient of the sample with which we observed the effect is rather abnormally small even for manganine, and that we had not time to see if the same effect could be observed with other specimens.

Although from the values thus obtained we might have deduced the temperature coefficient, using only the determinations made after a rise of temperature, we considered it advisable to make some fresh experiments, using a modification of the same method. During the first series of observations with thermometer K.8, a considerable number of zeros had been taken during a period when the box-temperature differed markedly from day to day. The thermometer had meanwhile never been disconnected from the box; the contacts remained in the same condition throughout, and we have no reason to believe that any secular change occurred in the leads or thermometer wire during the experiments. These experiments, during which the box temperatures ranged from $6^{\circ} 60$ to $19^{\circ} \cdot 65$, were accordingly utilised to calculate the temperature-coefficients of the coils, and from them a formula was obtained by least squares for the change of resistance of the box-coils with temperature.

Choosing as a standard temperature 15°, a table was calculated giving the coefficients by which the nominal box-resistances must be multiplied to give the true resistances. This multiplier is alluded to subsequently as the "factor" in the example of the method of calculating an experiment given later. The following numbers extracted from the table, show the magnitude of the coefficient in question :-

Temp.	Factor.		Temp.	Factor.	
5°	1 -	$\cdot 0000602$	13°	1 -	$\cdot 0000169$
6	-	569	14.	-	087
7	-	530	15	$1+$	$\cdot 0000000$
8	-	485	16	$+$	093
9		434	17	$+$	193
10	--	377	18	$+$	299
11	-	314	19	$+$	410
12	-	244	20	$+$	528

The coils used for this experiment were those lettered C and $\mathrm{E}, 10$ and 3 ohms respectively, which may be taken as fairly representative. They enter into nearly all the comparisons with K.8.

It may be pointed out here that the influence of the variations of box-temperature on the results is largely eliminated in the experiments, as the fundamental points of the platinum thermometers were determined before, during, and after each series of experiments, and if a wrong value were taken for the coefficient to reduce all these to standard temperature, the errors committed would practically compensate one another.

We may mention here that the coefficients deduced by the method described above show a satisfactory agreement with those found from the ascending series of observations made by the first method, although the coils used in the two cases were not exactly the same.

XXI. Fixed Points of the Platinum Thermometers.

Before the commencement of each series of platinum thermometer comparisons a set of determinations of the zero and steam-points, generally about six in number, was always made; frequently check determinations of these points, especially of the zero, were interspersed between the comparisons themselves, thus giving an indication of the exact time when changes, if any, really took place. The zeros were taken in an apparatus similar in all respects to that described later in treating of the gas thermometer.

A few of the first steam-points were taken in an early form of the boiling-point apparatus usually employed at the Breteuil Laboratory, originally designed for mercury thermometers. During a long series of preliminary control comparisons between the platinum and gas thermometer at 100° we found, however, a very small but systematic discrepancy in the results, which disappeared when the steampoints of both thermometers were taken in the same apparatus. We therefore arranged that the same steam-point apparatus should be used by both of us in all the subsequent experiments.

The apparatus for the determination of the boiling-point of sulphur, and the special experiments made with it, are described later on p. 97.

XXII. Heating of the Thermometer Wire by the Current.

It is manifest that however small the current employed in the thermometers may be, it must needs heat them to some extent. Although the amount of this heating would be difficult to calculate, yet we thought it advisable to make a few experiments with a view to determine it, and at the same time to get some data from which we
might be able to fix upon the best magnitude of the current to be employed for the thermometric measurements.

For this purpose we made a number of determinations of the apparent resistance of thermometer K. 8 in ice using different battery-currents.

For these a curve was constructed showing the increase in apparent resistance of the wire with increasing energy absorbed in the coil, and a value calculated for what the resistance would be, if the current through it (and, consequently, the heating effect) were vanishingly small. Our measurements conclusively showed that, within the limits of accurate experiment, the heating effect was directly proportional to the watts in the wire, and that the heating per milliwatt for K .8 was about $0^{\circ} .006$.

In some of the earlier experiments, made before the heating effect was investigated, we employed a total resistance in the battery circuit of 150 ohms for measurements at 0°; the heating due to the current in this case being $0^{\circ} 024$. For all the subsequent experiments, however, by increasing the external resistance the heating was diminished to $0^{\circ} .014$ in ice.

Although we only made direct determinations of the magnitude of the heating effect at 0°, we have assumed, in the absence of further data, that for a thermometer coil the heating due to a given amount of energy expended in it is the same at all temperatures. As this is only approximate, some of our results may subsequently require small modifications; but the value we give later for the boiling-point of sulphur would not be affected, as it is expressed on the scale of the gas thermometer, the platinum thermometers being only used as an intermediary.

We calculated a table for each of the principal platinum thermometers, giving the resistance to be inserted in the external circuit for different temperatures.* In the example of a platinum temperature calculation given later, this number is referred to as the battery resistance "B.R. $=317$ ohms."

XXTIT. Determination of the Centre of the Brmge.

The index-error of the scale was determined from time to time during the work by reducing the resistances between $\mathrm{C}_{1} \mathrm{C}_{2}$ and $\mathrm{P}_{1} \mathrm{P}_{2}$ (fig. 1, p. 41) to zero, fixing all the contact pieces firmly in position, and determining the point of balance of the bridge. Should this not fall strictly at the centre of the scale, a correction for "bridgecentre" is applied in each resistance measurement.

[^3][Paragraph added December 1, 1899.-The measurements by which we attempted to determine the scale of the platinum thermometers may be divided into four groups, in which different instruments and means of heating were employed, and in which the precision varied from group to group.

These are-
(1) Comparisons in water between 0° and 50° of platinum thermometers K .8 and K. 9 with the four principal mercury standards of the Bureau.
(2) Comparisons of K. 8 and K. 9 in an oil bath at temperatures between 80° and 200°, with a constant volume nitrogen thermometer, the initial pressure of the gas being 793 millims. of mercury.
(3) Comparisons of thermometers K. 8 and K. 9 between 250° and 460° in a bath formed of a mixture of nitrates of potash and soda, with the nitrogen thermometer, the initial pressure being 529 millims.
(4) Comparison of thermometer K. 2 with the same nitrogen thermometer in the same bath between the temperatures 424° and 586°, the initial pressure being 392 millims.
As the sensibility of the gas thermometer varies according to the initial pressure, it is evident that the same precision cannot be attained in the different series. The construction of our instrument was such that the highest measurable pressure was about 1400 millims.]
XXIV. General Considerations on the Gas Thermometer.

In accordance with the decision of the International Committee of Weights and Measures, , the provisionally accepted normal scale of temperature is that of the constant-volume hydrogen thermometer. The employment of hydrogen for our work seemed therefore advisable, and before proceeding to the actual comparisons, we made a number of trials of the hydrogen thermometer between 100° and 200°. Up to temperatures about 180° these experiments gave fairly good results, but we noticed that prolonged heating above 180° was generally followed by a diminution of the gass contained in the thermometer reservoir. This diminution, though small, being regularly reproduced after each prolonged heating, might become serious at higher temperatures. Some special measurements, made on a known quantity of hydrogen enclosed in a capillary of "verre dur" of I square millim. cross section, and exposed

[^4]repeatedly to temperatures varying from 200° to 250°, showed that the volume of the gas regularly diminished.

It therefore seems evident from these experiments that the walls of "verre dur" absorb a minute quantity of hydrogen.

It appears probable that this absorption is due to the reduction of sulphates contained in the glass. The employment of lead-glass as the material for the reservoir instead of "verre dur" would probably give rise to still more serious effects on account of the reduction of the salts of lead.

To avoid in the measurement of temperature the uncertainties caused by the variations of the gaseous mass, of which we have just spoken, and which might affect not only its quantity but its composition, we have substituted nitrogen for hydrogen. The nitrogen scale certainly diverges a few thousandths of a degree from the hydrogen scale in the interval 0° to 100°. Its departure from the normal scale at high temperatures is likely to be small and can always be corrected subsequently, when the necessary data have been collected.

The initial pressures of the nitrogen gas thermometer show no diminution, but rather a slight increase, which is explained by the contraction of the glass due to the annealing.

XXV. Comparisons of the Platinum Thermometers K. 8 and K. 9 with the Mercury Standards.

The direct comparison of the platinum thermometers with the large normal hydrogen thermometer between 0° and 100° would have necessitated such an enormous amount of work, without offering any special advantage, that we decided not to employ this instrument, but to take instead the four primary mercury standards of the Bureau, Tonnelot thermometers Nos. 4428, 4429, 4430, and 4431, whose corrections to the hydrogen-scale have been previously determined with all possible precautions by one of us. An account of this work is given in vol. 6, 'Trav. et Mém. du Bureau International.'

The comparisons between these mercury standards and the platinum thermometers were made in an apparatus constructed originally for the comparison of mercury thermometers with each other, which was modified and considerably improved for the purpose of this research. This apparatus is shown in fig. 11.

It consists of two concentric, rectangular, copper troughs ; the outer one, which is protected by an oak case, having a capacity of about 70 litres. This trough communicates by a side tube with a small vertical copper vessel, well protected against radiation, which can be heated by a large gas burner. A screw stirrer, worked by a small motor, drives through the heater a rapid current of water, which is taken in at the opposite end of the trough by a horizontal tube resting on the bottom, and circulates as shown by the arrows in the figure.

The interior trough, which is 112 centims. long, 17 centims. wide, and 14 centims. deep, is provided at one end with a system of screw blades for stirring. Resting upon its bottom is the metal framework on which the thermometers are arranged. This thermometer support is so contrived that all the thermometers can, without risk of straining them, be simultaneously clamped parallel to one another, and in the same horizontal plane.

During the comparisons the platinum thermometer was fixed horizontally, with its spiral in the same plane as the mercury thermometers, and close to them. To prevent the water from penetrating to the portions of it which were exposed, the head

Fig. 11.

Horizontul Bath for Comparisons in Water.
A, stem, and e, head, of platinum thermometer ; l, brass box surrounding the head of platinum thermometer ; D, heater for water in outer tank; c, plate of milk glass.
was placed in a square brass box open above and provided with a side tube, through which the greater part of the length of the thermometer stem projected, the joint being made by an india-rubber stopper.

The internal tank is provided with a rim, on which rests a piece of plate glass 8 millims. thick, covering the whole surface of the water, with which it is just in contact.

By this arrangement the cooling by evaporation is almost entirely prevented, and the attainment of a very constant temperature much facilitated. When operating at temperatures below that of the room, it is advisable to cover the glass with a thin layer of water, in order to avoid the deposition of dew upon it.
vol. CXCIV.- Λ.

The readings of the mercury thermometers are made by means of a small vertical reading telescope sliding on the glass plate, and can be made while the stirrer is at work. The space around the inner tank is closed above by a metal lid, pierced with the necessary openings for the axes of the stirrers.

Observations with Thermometer K.8.

The thermometer K. 8 was compared under these conditions with the four standards at temperatures between 0° and 50°. These experiments are numbered 4 to 1.7 in the summary of results for K. 8 at the end. To avoid the errors of parallax on the mercury thermometers, ten readings were made with the divisions upwards and ten with the thermometers turned through 180°. After each series the zeros of the mercury thermometers were observed in the usual manner with a micrometer telescope.

Three other observations at higher temperatures (numbered 18 to 20 in the table) were made with the same thermometers in another apparatus, described later when treating of the gas thermometer. In the three experiments all the instruments were used in the vertical position.

Care was taken to have only a very small emergent column in each case. The bath was filled with oil, and was heated by the vapour of ethyl alcohol boiling under various pressures.

We also made three measurements below 0° in an apparatus specially constructed for experiments at low temperatures, which has been described in the 'Process-verbaux des Séances du Comité International,' 1891, page 33. The thermometers plunge into a bath of alcohol cooled by the evaporation of liquid methyl chloride, and stirred continuously by a suitable mechanism. The two mercury standards, Tonnelot thermometers Nos. 11,165 and 11,166, which were employed for these observations, have been studied at the Bureau, and compared directly with the hydrogen thermometer under the same conditions.

The series we made consists of three experiments numbered 1 to 3 in the Summary.

Observations with Thermometer K.9.

The later series of comparisons of thermometer K. 9 with the mercury standards was made under precisely similar conditions to those described above for K.8, but the number of different points in this case was not so great; each experiment consisted of only ten observations instead of twenty as before. The experiments between 0° and 50° are numbered 1 to 6 in the table.

XXVI. Description of the Gas Thermometer.

The gas thermometer we employed for our researches is similar to the instrument previously described by one of us* and is shown in fig. 12.

It is a constant-volume thermometer arranged so as to permit the determination of the total pressure of the gas contained in the thermometric reservoir by a single reading. The simplification thus introduced into the measurements permits rapid observations without sensibly diminishing the precision, which is limited more by the conditions of uniformity of the baths and other heating arrangements employed than by reading errors.

The apparatus constituting the gas thermometer is installed on a foundation of concrete about 1 cubic metre in volume abutting against one of the massive walls of the laboratory. On this foundation on the left hand rests a rectangular stone pillar, with slate top, carrying the manometric apparatus, while the heating baths on the right are supported on the same foundation at floor level, this however not being shown in fig. 12. The manometric apparatus is protected from heating by a large paper screen which extends upward right to the ceiling, and which is pierced with the holes necessary to admit the passage of the various connecting portions.

(a) Thermometric Reservoir.

For the first part of the experiments we employed a cylindrical reservoir of hard glass drawn from a tube 36 millims. external diameter and 1.5 millims. thick.

This tube, closed at one extremity, was fused at the other to a capillary tube of the same glass, having a bore of 0.53 millim. and 90 centims. long. Fig. 12 shows the thermometric reservoir mounted for the experiments, its axis being in the vertical position, which we find the most convenient for the introduction of the reservoir into the various baths employed. The outer bend of the tube carrying the reservoir is supported by a light frame from the iron girder carrying the manometer, and slides vertically along this through a considerable distance.

The porcelain reservoir employed for work at high temperatures was obtained from the Royal Porcelain Factory at Berlin. It is cylindrical in shape and is 36 millims. external diameter and 20 centims. long. The reservoir has a neck 28 centims. in length and 11 millims. exterior diameter. It is pierced with a hole of 2 millims. diameter, into which just passes the platinum capillary uniting the reservoir to the manometer. The joining of the platinum tube to the neck of the manometer is a matter of some difficulty, since it is of great importance that this joint should be absolutely gas-tight. We finally adopted the following disposition which has answered well. On the platinum tube which enters to a length of 11 centims. into the neck of the reservoir, a brass washer is soldered which fits exactly to the flat end of the

[^5]Fig. 12

Sketch of Gas Thermometer.
The reservoir is shown raised above its natural position in the comparison bath, and the screens are all removed.
R, mercury reservoir; a, steel connecting tube; r, r, scale ; c and v, slide and worm gear holding the barometer and scale; m, m, handles for adjustment of position of barometer and scale.

Fig. 13.

Detail of Manometer-point.
t, glass tube optically ground inside and out; b, brass collar, holding the cylindrical stopper of nickelsteel ; v, ground joint.

Fig. 14.

Section of slide carrying the manometer and scale.

Fig, 15.

Zero apparatus.
neck. This washer is tightly held in place by a brass clamp, which screws on to a collar made in halves and fixed to the narrow part of the neck by a cement, which is a little less fusible than that employed for the joint proper.
(b) Barometer and Manometer.

The manometric apparatus is mounted on a vertical iron girder, 2 metres high and of H -shaped cross-section, solidly bolted by three diverging iron feet to the massive pillar previously described. The external faces of the girder are planed up as true as possible over their entire length, and on them slide supports for the manometric tubes, the barometer, and mercury reservoir. To increase the stability of the whole, the top of the iron column is fixed to the wall by a transverse piece, which also serves to support two brass tubes on which slide the observing telescopes.

The barometer consists in its upper part of a tube of 15 millims. internal diameter. A point of black glass is fixed axially in the interior of this tube by fusion. This is referred to subsequently as the barometer-point. Below the barometric chamber the tube has a double bend, which brings the lower part of the tube 4 centims. to the right of the upper portion.

The barometer tube is firmly fixed above to a carriage, c, which can be displaced, vertically by the movement of a screw 60 centims. in length, working in bearings above and below, and engaging by bevel gearing with a horizontal shaft projecting forwards. By turning the small handle m the barometer can be raised or lowered at will.

The piece which maintains the barometer tube on its support also carries suspended between two points by one of its extremities a graduated brass scale 1.5 metres long, whose axis is at a distance of 48 millims. from the barometer point. This scale shares all the movements of the barometer carriage, and the glass point may be assumed to have an invariable position with reference to the neighbouring divisions of the scale.

The lower end of the barometer is immersed under mercury in a tube of 90 centims. in length and 25 millims. in diameter, which serves as its reservoir; this tube can be fixed at different levels on the manometer support.

Projecting from the front of this tube are four stop-cocks at intervals of 15 centims., serving to establish communication between the barometer and manometer at any height.

The open branch of the barometer communicates below by means of a long steel tube, α, with a reservoir, R , of large capacity filled with mercury, which can be displaced vertically either rapidly by hand or slowly by a micrometer screw.

(c) Manometer.

The closed branch of the manometer, the details of which are shown in the fig. 13, is composed of a rather thick-walled flint glass tube 16 millims. internal diameter,
which has been optically worked inside and out, in order to render it perfectly cylindrical; the freedom from longitudinal strix thus obtained gives great sharpness to the images obtained through it. The upper end is closed by a stopper of glass or metal, pierced with a fine hole. Into this stopper is fastened the end of the capillary tube fused to the thermometric reservoir. The stopper, which is ground perfectly cylindrical, enters the tube, which it fits closely, for a length of 25 millims., and is fixed in position by a very thin layer of Canada balsam, thus forming a perfect joint.

The lower part of the stopper is plane and well polished, and carries at its centre a very fine steel point 0.5 millim. long, which serves as an index mark to which the mercury may be accurately adjusted. To avoid all displacement of the stopper and tube in their support, a brass collar is fixed in a groove ground in the stopper, and this is firmly screwed to the iron support by the clamp b. The piece of bronze carrying the manometer tube also serves to maintain the position of the lower end of the scale, and to carry the vernier, whose zero thus occupies an invariable position with regard to the steel point in the manometer tube. The closed limb of the manometer is so arranged on its support that its axis is in the same vertical line as the point in the upper chamber of the barometer. The scale remains vertical for all positions of the sliding supports of the barometer and manometer. These conditions being fulfilled, it is evident that if the distance between the point in the closed branch and the zero of the vernier is once for all known, a single reading of the scale, corrected for the "index error," which is defined later, suffices to give the difference of level between the two points.

The closed branch of the manometer fits below into a glass T-piece, the horizontal limb of which communicates with a system of tubes serving for the exhaustion and filling of the reservoir. The lower end of this glass tube is bent horizontally forwards, and communicates by a tap with one of the four taps on the open branch of the manometer.

(d) Measurements of Pressures.

The disposition of the manometric apparatus permits, as has just been seen, the measurement at any moment of the distance between the two points in the barometer and the closed branch. The communication between the columns of mercury filling the manometer and the barometer reservoir being established, the pressure exerted by the gas on the mercury in the closed branch is balanced by increasing or diminishing the height of the mercury in the open branch, which is effected by raising or lowering the auxiliary reservoir placed on the left. The barometer tube is simultaneously displaced, in order to keep the mercury in the neighbourhood of the point in the barometric chamber. The equilibrium sought is attained when the mercury just reaches at the same time the points in the closed branch and in the barometer chamber. The observation of this adjustment of the mercury is made by means of two small telescopes magnifying about 36 times, sliding vertically on a brass
tube and placed at a distance of 38 centims. from the manometer. A second tube serves to support three other small telescopes, for the observation of the scale-vernier, and two auxiliary mercury thermometers, which are placed close to the mercurial columns to indicate their temperature.

During the measurements the observer is at a distance of about 50 centims. from the apparatus ; his influence on the temperature of the mercurial columns is thus considerable, as is also that of the various heating baths, and by reason of the great expansion of mercury, this heating probably constitutes one of the principal sources of error in the experiments. To diminish as far as possible the radiation from the comparison-bath, a double walled metallic screen, in which a current of water circulated, was interposed between it and the manometer.

(e) Divided Scale.

The divided scale used was constructed by the Société Génévoise, and has served for previous work with the gas thermometer. Its length is 1.5 metres, and its crosssection is in the form of an H. This H -form is not well adapted for use with a vernier. It would be better to adopt a form allowing the surfaces carrying the divisions of the scale and vernier to be in the same plane. In this scale the divisions are on a plate of silver let into the median transverse face, very near the plane of the neutral fibres.

Fig. 14 shows in horizontal projection the disposition of the pieces which support the scale and attach it to the barometer, and fig. 13 the pieces which hold the vernier on the support of the manometer tube, and which ensure contact between the scale and the vernier. The method of suspension of the scale permits it to turn about two axes perpendicular to its length. In the two directions of free movement two springs gently press the scale against the vernier.

Two thermometers placed at equal distances from the points in the barometer and manometer tubes, the one on a fixed support, the other on an attachment to the barometer, serve to indicate the temperatures of the mercurial columns and of the scale. Each of these thermometers is placed in a test-tube filled with mercury, of the same diameter as the neighbouring portion of the manometer tubes. This symmetrical arrangement of the thermometers with regard to the ends of the mercury columns whose temperature is to be measured considerably simplifies the calculation of the mean temperature of the manometer.

XXVII. Zero Apparatus.

A glass bell-jar supported on an iron tripod and surrounded by several layers of felt serves as the receiver. The ice, finely divided and saturated with pure water, is pressed around the reservoir of the thermometer, the emergent stem being held by a
clamp fixed on the support of the bell-jar. The apparatus, filled with ice and protected by a cover of thick flannel, can be left three or four hours without the least perceptible change of temperature in the central part occupied by the reservois,

XXVIII. Steam-point Apparatus.

The 100-point apparatus, shown in fig. 16, is composed of a small boiler of 3 litres capacity, communicating by a lead tube with a double walled vertical vessel, into

Fig. 16.

Steam-point apporratus.
V , reservoir of gas thermometer.
O, copper boiler.
E , double-walled cylinder.
R , condenser.
m, water manometer.

Fig. 17.

Oit-bathe for comparisons to 200°.
Nome- The stiring arrangements are not shown. U, copper oil vessel.
R , condenser.
V, air reservoir.
M, manometer.
C, wall of vapour bath cat away to show interior.
which the thermometer reservoir can be introduced from above. The vapour developed in the boiler first passes up the inner tube of the stearn bath, then descends by the exterior annular space, finally arriving at the condenser, whence it
returns to the boiler by a tube plunging below the water-level. All the communication tubes between the different parts are wide, and arranged so as to avoid the possibility of their becoming choked by the condensation of water in them. The excess of the interior pressure over that outside can be measured by a small watermanometer introduced into the cork.

XXIX. Comparison-bath for Range 80° to 200°.

The disposition of this apparatus, indicated in fig. 17, is the result of a long series of experiments, the aim of which was to obtain a bath sufficiently uniform in temperature to be employed for the accurate comparison of mercury thermometers with the gas thermometer over the range mentioned. It fulfils satisfactorily the principal requirements of an apparatus of this kind, viz. :-
(1) Uniformity of temperature throughout a space of large dimensions.
(2) Rapid re-establishment of a steady state after the pressure in the boiler has been altered.
(3) Employment of a small number of inexpensive liquids easily obtained in a state of sufficient purity.

The boiler consists of a cylindrical vessel of planished copper 2 millims. in thickness ; it has a diameter of 17 centims. and a height of 82 centims. A bell-shaped vessel of the same material is soldered by its rim concentrically into the interior of the cylinder. This inner vessel is filled with a heavy petroleum oil, in which the reservoirs of the thermometers to be compared are directly immersed.

The stirring is effected by a vertical stirrer (not shown in the figure), the stems of which emerging from the bath are protected against cooling by glass tubes. The annular space between the two vessels serves for the circulation of the vapour, and to increase the uniformity of this circulation the space is divided into two approximately equal parts by the introduction of a thin tube of copper open at both ends, and resting on the bottom of the cylinder. The vapour given off by the boiling liquid, which fills the lower part of the outer vessel, rises first in the interior space in contact with the walls of the oil-bath, then descends by the exterior, again ascending into the condenser placed at one side, whence it passes in the state of liquid back to the boiler by a lateral tube. The reversed condenser is in communication by a wide tube with a large copper reservoir in which the pressure can be varied at will, or kept constant, thus changing the temperature of ebullition by a considerable amount; by using only three liquids any temperature between 80° and 200° can be quickly attained and kept extremely constant for any length of time, provided only that the joints in the whole apparatus remain perfectly tight. A mercury manometer indicates the pressure of the vapour. The bath is covered with several layers ot asbestos-card to avoid losses by radiation and their effects on the temperature of the room.

XXX. Preliminary Determinations.

(a) Measurement of the Capacity of the Thermometric Reservoir.

Before proceeding to the measurement of the capacity of the thermometric reservoir, we considered it advisable to subject it to a prolonged annealing at the temperature of the boiling-point of sulphur. After thirteen hours' heating we obtained for its capacity at 0°

$$
V_{0}=159.670 \text { cub. centims. }
$$

and after a second exposure of eleven hours we found

$$
\mathrm{V}_{0}=159 \cdot 642 \text { cub. centims. }
$$

This value was a little modified during the operation of mounting the thermometer, as a short piece of the connecting capillary had to be suppressed. Allowing for this we found for the first part of the experiments the value

$$
V_{0}=159 \cdot 629 \text { cub. centims. }
$$

(b) Coefficient of Dilatation of Hard Glass.

The dilatation of "verre dur" was not measured directly on the thermometric reservoir itself, but on a tube of 1 metre length drawn from the same melting; its linear dilatation was determined by a long series of experiments at temperatures comprised between 0° and 100°. These experiments have given for the law of cubic dilatation of glass between 0° and 100° the formula

$$
\mathrm{V}_{t}=\mathrm{V}_{0}\left(1+0.000021801 t+0.000000015536 t^{2}\right)
$$

whence, for $t=100^{\circ}$,

$$
V_{100}=V_{0}(1+0.00233550)
$$

During some subsequent experiments on the effect of prolonged heating on glass, we had occasion to control this result by determining the dilatation between 0° and 100° of a " verre dur" vessel drawn from the same tube as the thermometric reservoir. From these observations we found
(1) Before annealing $V_{100}=V_{0}(1+0.0023571)$,
(2) After annealing at 445° for 81 hours . $V_{100}=V_{0}(1+0.0023436)$.

These last measurements furnish no indication of the magnitude of the term in t^{2}, which alone has any influence on the temperature measurements. We have therefore employed, for all the observations relative to the glass reservoir, the expression with two terms indicated above.
(c) Determination of the Coefficient of Pressure of the Thermometric Reservoir.

The capillary tube fused to the thermometric reservoir had, at the commencement, a length of about 250 millims. The volume of this tube was determined by weighing a thread of mercury occupying in it a length of 200 millims. ; the weight of mercury contained in 1 millim. of length was found to be 1.69185 gramme. The calibre of the tube was afterwards studied by Gay-Lussac's method between the two extreme points 0 and 250. The calibration corrections thus obtained had to be applied in the reduction of the observations on the coefficient of pressure. To measure this coefficient the same method is followed as for the determination of the coefficient of external pressure of mercury thermometers.

The thermometric reservoir is placed in a glass tube filled with water, and closed by a cork pierced with a hole, through which passes the capillary attached to the reservoir. The space between the reservoir and the external tube can, by means of stop-cocks, be put into communication either with the atmosphere, or with a large exhausted vessel. The reservoir itself being filled with water up to a certain scale division, observations are made of the displacements of the meniscus produced by varying the external pressure by nearly an atmosphere.

The observations effected under these conditions gave, after all reductions, the following value for the variation Δv of the volume of the reservoir, which corresponds to a variation of external pressure equal to a millimetre of mercury,

$$
\Delta v=0.006228 \text { microlitre }
$$

This value of the coefficient of pressure was employed for the calculation of a table giving the variations of volume of the reservoir corresponding to the changes of internal pressure observed in the course of the experiments.

(d) Determination of the "Dead Space" ("Espace Nuisible").

The determination of the volume of the space occupied by the gas not exposed to the same temperature as the reservoir presents peculiar difficulties. It is of extreme importance that the limits of this space should be well defined, which, however, cannot be done quite rigorously.

The "dead space" may be divided into two parts: (1) the space occupied by the gas in the closed branch of the manometer between the mercury touching the point and the lower surface of the stopper, and (2) the internal volume of the capillary tube between the plane of the stopper and the part of the tube which penetrates into the heating apparatus. The curvature of the mercury-meniscus in the closed branch is necessarily somewhat variable, and as the diameter of the tube is 16 millims., small
variations in the capillary angle have an appreciable effect on the volume of the gas above the mercury. The extent of the second part on the side of the reservoir is also somewhat uncertain, because of the rapid variation of temperature near its end, but as the capillary tube has only a very small diameter, the influence of this cause of error is not great.

In order to avoid the uncertainty of any hypothesis concerning the capillary angle under the actual circumstances, we attempted to measure the total volume of the "dead space" directly in the following manner.

The capillary tube joining the thermometric reservoir to the manometer being straight, the closed branch of the manometer was fixed on its support in the position it afterwards had to occupy (fig. 18), and the open extremity of the reservoir was connected to the mercury pump. The side tube, S , of the manometer terminated in a tube bent downwards, whose lower end was about on a level with the point. The tap, R , was placed in communication with the auxiliary mercury reservoir forming part of the gas thermometer. The tube, m, was first exhausted, and then filled up with mercury to near the steel point, and the tube, s, completely filled; then air was readmitted, and the mercury was adjusted to the point by slightly displacing the reservoir. The taps, R and t, being then shut, the whole was again exhausted. A small, carefully weighed vessel containing mercury was placed under the tube, s, and by opening the tap, t, mercury was allowed to enter the manometric tube and fill all the space above the point, rising to the level, c, which is at the barometric height above the mercury in the weighed vessel. The volume of the "dead space" could then be deduced from the loss of weight of the small vessel. It should be remarked that the pressure in m at the end of the experiment was very nearly the same as at the beginning, and all uncertain corrections were thus avoided. The divergence found between the individual observations given are a fair measure of the inevitable variations of the "dead space" during the experiments.

If the point, c, did not coincide exactly with the limits of the "dead space," it would be easy to take account of the difference, the volume of the capillary tube having been previously measured.

The following values for the volume of the "dead space" were obtained by the above method:-

> cub. centim.
> (1) 0.4371
> (2) 0.4503
> (3) 0.4469
> (4) 0.4380
> (5) 0.4385
> (6) 0.4385
> (7) 0.4385
> Mean . . . $v=0.4411$
> (e) Determination of the "Index Error."

The readings made on the scale by means of the vernier do not represent exactly the difference of level between the points in the barometer and the closed branch of the manometer ; this is due to two causes. The first is that the point of the barometer is not at the same level as the division, 0 , of the scale. All the scalereadings have, therefore, a correction applied which we will call the correction for "index error," which must be determined by special measurements with a good cathetometer. This correction, which would be constant if the plane surface of the girder on which the barometer slides were absolutely true, varies slightly according to the position of the barometer.

The second cause is that the point in the manometer is not at the same level as the division, 0 , of the vernier. This latter correction may, perhaps, be considered constant for a given position of the closed branch of the manometer.

The correction for the "index error" has been determined frequently during the course of the experiments, especially that relating to the lower point, the position of. which has been modified several times. The publication of the observations being of no interest, we give simply the values of the constants relating to two positions of the closed branch. From the observations of the 3rd and 4th of May, 1898, the correction relating to the barometer was found to be

$$
\mathrm{C}_{b}=-9 \cdot 588 \text { millims. }
$$

and the correction relating to the manometer point in the raised position (for observations at 0° and 100°)

$$
\mathrm{C}_{m}=+20 \cdot 130 \text { millims. }
$$

whence the total correction for "index error" is given by

$$
\mathrm{C}=\mathrm{C}_{b}+\mathrm{C}_{m}=10.542 \text { millims }
$$

In the lower position of the manometer (used in comparisons between 100° and 200°) the total correction had the slightly different value $\mathrm{C}=10.552$ millims.
(f) Corrections of the Scale and Vernier.

The corrections of the scale are given in vol. 6 of 'Trav. et Mém. du Bureau International.' We need say here only that the study of this scale by M. Isaachsen gives the corrections at each decimetre graduation, except the second, and at all the even centimetres between 500 and 1400 .

The vernier is divided into twenty parts, and its total interval $(0,20)$ corresponds to a length of 18.980 millims. instead of 19 millims. A correction must therefore be applied to the vernier readings, which is proportional to the fraction measured, and whose maximum value is 20 micron.

The measurements made to verify the equidistance of the divisions of the vernier showed that the errors of division attain 10 micron. for certain lines, but by reason of their irregular distribution, and of the repetition of the observations using different parts of the vernier, they have not been taken into account.

XXXI. Calculation of the Temperatures.

The deduction of the formula employed for the calculation of the temperatures has been given with all necessary details in the memoir already quoted,* therefore we only give here a résumé of the process.

Let V_{0} be the volume at 0° of the gas contained in the thermometer reservoir ;
δ the mean coefficient of dilatation of the reservoir between 0° and T°;
α the coefficient of expansion of the gas at constant volume;
v the volume of the "dead space" at the standard temperature t°;
Δv and Δt the variations of volume and temperature of the "dead space";
H_{0} the initial pressure of the gas corresponding to the temperature 0° of the reservoir and t° of the "dead space";
$\mathrm{H}_{0}+h$ the pressure of the gas at the temperature T° to be determined ; the temperature of the "dead space" being $t+\Delta t$, and its volume $v+\Delta v$;
β_{i} the internal pressure coefficient of the thermometric reservoir.
The total mass of the gas being the same at the temperatures 0 and T , we have

$$
\left(\mathrm{V}_{0}+\frac{v}{1+\alpha t}\right) \mathrm{H}_{0}=\left[\frac{\mathrm{V}_{0}(1+\delta T)+\beta_{i} h}{1+\alpha^{\prime} \mathrm{L}}+\frac{v+\Delta v}{1+\alpha(t+\Delta t)}\right]\left(\mathrm{H}_{0}+h\right) .
$$

Suppose now that we have applied to the pressures H_{0} and $\mathrm{H}_{0}+h$ the corrections necessary to reduce them to what they would have been had the whole "dead space" been maintained at 0°, and let us call these new pressures $\mathrm{H}_{0}{ }^{\prime}$ and $\mathrm{H}_{0}{ }^{\prime}+h^{\prime}$; we have then the simplified formula

$$
\left(\mathrm{V}_{0}+v\right) \mathrm{H}_{0}^{\prime}=\left[\frac{\mathrm{V}_{0}(1+\delta \mathrm{T})+\beta_{i} h}{1+\alpha^{\prime} \mathrm{T}}+v\right]\left(\mathrm{H}_{0}^{\prime}+h^{\prime}\right)
$$

[^6]whence, by certain simplifications, we get finally
$$
\alpha \mathrm{T}=\frac{\mathrm{H}_{0}^{\prime}+h^{\prime}}{\mathrm{H}_{0}^{\prime}}\left[1+\delta \mathrm{T}+\frac{\beta_{i} h}{\mathrm{~V}_{0}}\right]+\frac{h^{\prime} v}{\mathrm{H}_{0} \mathrm{~V}_{0}}(1+\alpha \mathrm{T})-1 .
$$

This formula was used first to calculate the coefficient α between the known temperatures 0° and 100°, the value found being afterwards utilised for the calculation of the temperatures observed in the comparisons.

XXXII. Corrections Relating to the "Dead Space."

The corrections, which must be applied to the observed pressures, to reduce them to what they would have been had the whole of the "dead space" been at 0° throughout, are easily deduced from the laws of Boyle and Gay-Lussac.
(1) Let us first suppose that the " dead space" is composed of different parts
whose temperatures are

$$
\boldsymbol{v}=v_{1}+v_{2}+v_{3}+\ldots
$$

$$
t_{1}, t_{2}, t_{3}, \ldots
$$

If now we reduce to 0° these gaseous volumes without changing the pressure p to which they are subjected, we have as total variation of volume

$$
\Delta v=\frac{v_{1}}{\left(1+\alpha t_{1}\right)}+\frac{v_{2}}{\left(1+\alpha t_{2}\right)}+\frac{v_{3}}{\left(1+\alpha t_{3}\right)}+\ldots-v .
$$

The temperatures $t_{1}, t_{2}, t_{3} \ldots$, being generally positive, Δv is negative.
(2) To find the correction sought, it is necessary to transfer from the reservoir, where the temperature is T°, and the pressure p, a quantity of gas occupying at 0° the volume Δv, or what comes to the same thing, the volume of the reservoir V must be increased by a quantity equal to $\Delta v(1+\alpha \mathrm{T})$. It is evident that this increase in volume involves a variation of pressure
which can also be written

$$
\Delta p=p\left(\frac{\mathrm{~V}}{\mathrm{~V}+\Delta v(1+\alpha \mathrm{T})}-1\right)
$$

$$
\Delta p=-\frac{\Delta v}{\mathrm{~V}}(1+\alpha \mathrm{T}) p
$$

and which represents the correction sought.
For the application of these corrections we constructed two tables. The first gives for every degree the values of

$$
v_{1}\left(\frac{1}{1+\alpha t_{1}}\right), \quad v_{2}\left(\frac{1}{1+\alpha t_{2}}\right), \quad v_{3}\left(\frac{1}{1+\alpha t_{3}}\right), \text { etc. }
$$

and enables the values of Δv to be rapidly calculated.

The second table gives the values of

$$
-\frac{\Delta v}{\mathrm{~V}}\left(1+\alpha^{\prime} \mathrm{T}\right)
$$

for all the values of T in the comparisons.

XXXIII. Filing of the Gas Thermometer.

The nitrogen employed was prepared by the following method; into a solution of 100 grams of potassium bichromate in 900 grams of distilled water were introduced 100 grams of nitrite of soda and 100 grams of nitrate of ammonia. When gently heated, this mixture gives off a very regular stream of nitrogen, which is collected in a large bottle over distilled water. To destroy any oxides of nitrogen which the gas may contain, it was passed through two tubes containing caustic potash, then over copper, heated to dull redness in a combustion tube, and finally through a series of drying tubes containing baryta and phosphoric anhydride. The gas, after remaining a long time over the drying agents, was introduced into the reservoir of the gas thermometer by a series of glass tubes, leading on the one hand to the tap on the manometer-limb and on the other by a side-tube to the mercury pump.

The reservoir was then heated for some time to about 250°, being meanwhile thoroughly exhausted by the mercury pump. Dry nitrogen was then admitted, and the alternate evacuation and filling with gas were repeated several times. Our first definite filling was made on February 2, 1898.

As the comparisons were to extend between the limits 100° and 200° the initial pressure at $0^{\circ} \mathrm{C}$. was adjusted to be approximately 800 millims. of mercury, the pressure at 200° corresponding to this being about 1,387 millims. This is nearly the highest pressure which can be measured on the manometer.

XXXIV. Determination of the Initial Pressure.

It is essential to measure repeatedly the pressure of the gas at the temperature of melting ice, in order to make sure that no leakage takes place at the joints, and to be in a position to take into account the inevitable small variations in capacity which take place when a glass reservoir is employed. As we have previously mentioned, prolonged heating produces a permanent contraction of the glass, therefore we may expect an increase in the initial pressure after the comparisons at high temperatures.

For observation of the initial pressure the zero apparatus, previously described, is used. We give, as an example of a determination, the second series of observations of May 3, with their reductions, in the form adopted throughout the whole of the experiments.

We have taken for the temperature of the "dead space" that indicated by the nearest thermometer, No. 4365.

3rd May.

All the observations given on the following page have been calculated exactly as in the example quoted, regard being paid to the subsequent modifications in the "index error."

XXXV. Determinations of the Coefficient of Expansion of Nitrogen.

The thermometer reservoir and the capillary tube which forms part of it were placed in the boiling-point apparatus described on p. 72.

As regards the parts of the capillary tube included in the "dead space," these
were protected from the heating effect of the boiling-point apparatus by surrounding sleeves of thin copper, traversed by a current of cold water. The temperature was observed by means of a small thermometer placed with its bulb in one of the sleeves.

The temperature of ebullition of the water was deduced from the barometric pressure, observed every 3 minutes, on the auxiliary barometer No. 3 of the Bureau, placed in a neighbouring room, the necessary corrections being of course applied.

The following example, which is one of the observations of May 13, will suffice to illustrate the course of the operations.

Determination of the 100 -point.

The total volume of the "dead space" being $445 \cdot 10$ cub. millims., the part surrounded by the sleeves, whose volume was $74 \cdot 76$ cub. millims., had the temperature $12^{\circ} .8$ indicated in the last column on the right. For the rest of the "dead space," of volume 366.34 cub. millims., we have adopted the temperature $13^{\circ} .77$ indicated by the auxiliary thermometer No. 4365.

The excess of pressure of the vapour over the barometric pressure is measured by
a small water manometer placed in the cork of the apparatus, and must be transformed to mercury pressure and added to the reduced barometric height.' From this total pressure the temperature is deduced by means of the tables published by M. Broch for the temperatures of ebullition of pure water,* part of which is re-printed in the Appendix to this paper, Table III.

If the small variations of initial pressure during the course of the experiments be taken into account, we obtain, on applying to the observations the formulæ indicated above, the following values for the coefficent of expansion of nitrogen under constant volume:-

The general mean of these four groups of determinations has been employed for the calculation of the temperatures in the series of comparisons made about this time, excepting the series with the thermometer K.9, for which the mean of the last group of observations 0.00367227 was adopted.

XXXVI. Comparisons between Platinum Thermometer K. 8 and the Nitrogen Thermometer.

These comparisons were made in the oil-bath previously described (Section XXIX). Fig. 17 shows the arrangement of the two instruments in the comparison-bath. For the first series between 88° and 116° water was employed in the jacket.

Simultaneous observations of the two instruments were made by the authors while an assistant worked the stirrer.

Each comparison at any one temperature consisted of ten observations. To eliminate slight uncertainties due to thermoelectric effects the battery current was always reversed after the first five readings.

The second series of observations, extending from 120° to 160°, was obtained by the ebullition of paraxylene, and the final series up to 190° with aniline.

As we have indicated in the résumé of the zeros on p. 82 , the comparisons of K. 8 with the nitrogen thermometer may be divided into two groups, the first extending from 88° to 161° (March 23 to April 2) and consisting of twenty-six observations, the second from 89° to 190° (May 14 to 24) and comprising twenty-two observations.

We give as example of a comparison the observations of May 24 at $188^{\circ} \cdot 6$.

Nitrogen Thermometer Readings, 24th May.

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Time.} \& \multirow[t]{2}{*}{Vernier readings.} \& \multirow[t]{2}{*}{} \& \multicolumn{2}{|l|}{Auxiliary thermometers of the manometer.}

\hline \& \& \& 4365 (low). \& 4362 (high).

\hline \multirow[t]{10}{*}{11.25

11.40} \& millims.

$$
1327 \cdot 260
$$ \& \multirow[t]{10}{*}{.} \& $16^{\circ} \cdot 050$ \& $17^{\circ} 800$

\hline \& . 570 \& \& . 060 \& . 800

\hline \& $\cdot 485$ \& \& $\cdot 070$ \& -820

\hline \& $\cdot 385$ \& \& -100 \& -820

\hline \& $\cdot 370$ \& \& -100 \& -845

\hline \& $\cdot 310$ \& \& -110 \& -850

\hline \& -310 \& \& -110 \& -850

\hline \& -300 \& \& -120 \& . 900

\hline \& -350 \& \& $\cdot 130$ \& -890

\hline \& $1327 \cdot 350$ \& \& $16 \cdot 140$ \& $17 \cdot 880$

\hline \multirow[t]{4}{*}{| Mean . |
| :--- |
| Vernier correction Correction for index error. $=$ |} \& \multirow[t]{4}{*}{\[

$$
\begin{array}{r}
1327.369 \\
+\quad .007 \\
+\quad 10.550
\end{array}
$$
\]} \& \multirow{4}{*}{Total correction .} \& 16.099 \& $17 \cdot 846$

\hline \& \& \& - 052 \& - 335

\hline \& \& \& \&

\hline \& \& \& 16.047 \& 17:511

\hline \multirow{5}{*}{Correction for dilatation . $=$
$", \quad$ gravity . . $=$
$\Delta p . " . ~ " s e a l e ~ . ~ . ~$
Δp} \& $1337 \cdot 926$ \& \& \multicolumn{2}{|c|}{\multirow[t]{2}{*}{Mean $=16^{\circ} \cdot 779$}}

\hline \& \multirow[t]{3}{*}{$$
\begin{aligned}
& +\quad 444 \\
& + \\
& -\quad .048 \\
& -\quad .346
\end{aligned}
$$} \& \& \&

\hline \& \& \& \multicolumn{2}{|l|}{\multirow[t]{3}{*}{$$
\begin{gathered}
\Delta v=-24 \cdot 5 \\
\text { Nitrogen temperature }=188^{\circ} \cdot 588
\end{gathered}
$$}}

\hline \& \& \& \&

\hline \& $1334 \cdot 329$ \& \& \&

\hline
\end{tabular}

Platinum Thermometer Readings. Experiment No. 68, 24th May, 1898.
Bridge-centre $=-\quad \cdot 002$ centim. \quad Battery resistance $=317$ ohms.
Coils B, F, J $=10488.249 . \quad$ Box temperature $=15.22$. Factor $=1+{ }^{0} 0000020$.

Readings.

a.		β.	
1	$+14 \cdot 135$	6	$+14.610$
2	$+16.875$	7	$+14.520$
3	$+16.270$	8	$+14 \cdot 900$
4	$+15 \cdot 330$	9	$+14 \cdot 930$
5	$+14.810$	10	+14.990

Mean bridge-wire reading . . $=+15.137$
Bridge-wire correction . . $=-0.035$
Corrected bridge-wire reading $=\quad+15.102$

Coils $=10488.249$
Bridge-wire reading . . . $=+15.102$
Centre correction $=+0.002$
Temperature correction , $=+0.020$
Resistance found $=10503.373$
Resistance at zero $=6110.805$
$\left(\mathrm{R}-\mathrm{R}_{0}\right)$. $=4392.568$
Fundamental interval . . . $=2361.246$
Platinum temperature . . . $=186^{\circ} .027$.
In reducing the observations we have taken as the mean of the determinations of initial pressure effected before and after each series the values- -

$$
\begin{array}{ll}
\text { For the first series } & \text { millims. } \\
\text { For the second series } & . \\
H_{0}=793 \cdot 470 ; \\
H_{0}=793.545 .
\end{array}
$$

XXXVII. Comparisons with the Thermometer K.9.

With the thermometer K.9, which has twice the resistance of K.8, a precisely similar series of comparisons was made. The constants adopted for the calculation of the nitrogen temperatures of this series were :-..

$$
\begin{aligned}
& \text { Initial pressure }=793.563 \text { millims. } \\
& \text { Coefficient } \alpha=0.00367227,
\end{aligned}
$$

which is the mean of the last group of determinations given on p. 84.
XXXVIII. Comparisons at Temperatures between 250° and 460°.

For the comparisons at high temperatures we constructed a special heating bath, which has proved satisfactory up to the temperatures indicated, and has subsequently been employed up to about 600°.

This apparatus is represented in fig. 19. It consists essentially of a bath of a
Fig. 19.

Bath for High I'emperature Comparisons.
F, cast-iron tank holding the mixed nitrates; A, stirrer shaft; C, chimney; T, wall of air-bath cut away to show interior.
mixture of nitrates of potassium and sodium, heated externally by a double circulation of hot gases, and stirred continuously by a system of rotating screws.

The cast-iron vessel which forms the bath has a depth of 50 centims. and an exterior quadrangular section of 20 centims. by 12 centims. ; the angles are slightly rounded at the corners and on the bottom. The interior cross-section of the bath approaches an ellipse, a form found by one of us especially favourable to thorough stirring, when the shaft carrying the rotating screw-blades is placed at one of the foci.

The casting is supported by four substantial feet, 6 centims. in length, on a massive iron plate. This plate is pierced in the centre by a large circular hole, 8 centims. diameter, connected to a suitable sheet-iron chimney, to take away the products of combustion. Around the bath is fixed the first envelope of stout sheet-iron resting on the base-plate, whose height is a little less than that of the bath. Over this is placed a second envelope, open below, slightly pyramidal, and protected on the exterior by several layers of asbestos-card and wool. This rests on the upper edge of the bath, and may easily be detached from the rest of the apparatus.

A special rectangular burner, fitted with several gas taps, is placed round the inner: envelope, near the lower opening. The hot gases rise first in the space between the two covers, then descend between the bath and the inner one, finally escaping by the chimney. The top of the bath and the whole of the hot portions of the apparatus which are exposed are prevented, as far as possible, fiom disturbing the temperature of the room by covering them with thick layers of asbestos-wool.

It would be dangerous to expose the thermometric reservoirs to the direct action of the melted salts. We therefore fixed in the bath thin weldless steel tubes closed at their lower ends, and projecting a few centimetres above the surface of the liquid. The thermometers were introduced into these tubes, which they fitted almost exactly. The tube containing the reservoir of the nitrogen thermometer was provided with a brass lid closely surrounding the capillary tube, a few washers of asbestos completing the joint.

The bath is stired by two sets of screw-blades fixed to a vertical steel shaft, which extends to a height of about 40 centims. above the top. The upper end of this shaft is suspended directly by a piece of rubber tube from the axis of a small electric motor worked by four accumulators.

The system of heating which we have just described allows a very satisfactory constancy of temperature to be attained, but several hours are required in order to obtain another equilibrium at a different temperature. 'To facilitate this, the bath was heated continuously during the whole course of the experiments at high temperatures. For the first set of comparisons, which were interrupted by an accident, and which consisted of a small number of measurements, we employed the reservoir of " verre dur" described previously.

In the second, and more complete series, the porcelain reservoir was used throughout.

First Comparisons. (Platinum thermometers, K. 8 and K.9, with "verre dur " gas thermometer.)-The comparisons numbered 70 to 72 in the table for K.8, and 25 to 32 in that for K. 9 were made during the summer of 1898 with the thermometric reservoir of "verre dur." The following table shows the sequence of the various operations.

Date.	Initial pressure in millims.	Determination of the coefficient of expansion of the nitrogen.	Remarks.
June 9	..	\ldots	Reservoir heated to 440° for four hours
," 9	532.877		
", 10	$532 \cdot 879$		
, 10	$532 \cdot 869$		
, 11	...	0.00366867	
, 11	\ldots	846	
, 11		849	
, 12	532.905		
, 12	$532 \cdot 868$	844	
$7 \quad 13$ 17	\cdots	827	Reservoir heated to 500°
	\ldots		Reservoir heated to 500
, 17	Commenced	mparisons with thermome	K. 9
, 19	$534 \cdot 320$		
- 19	$534 \cdot 298$		
- 19	$534 \cdot 307$		
" 20	$534 \cdot 295$		
". 20	Commenced	mparisons with thermome	K. 8

The comparisons all being subsequent to the heating of the reservoir to 500°, the nitrogen temperatures have been calculated, assuming for the initial pressure the mean of the observations made after the comparisons, viz. :-

$$
\mathrm{H}=534.305 \text { millims. }
$$

It will be noticed that this value differs by 1.42 millims.* from the initial pressure observed before the comparisons given previously; this increase is obviously due to the contraction of the reservoir by the annealing effect of the high temperatures. As the reservoir had been heated to about 500° before the observations, we concluded that the contraction was produced entirely before the first measurements.

XXXIX. Determination of the Constants of the New Gas Thermometer with Porcelatn Reservotr.

We have already described the porcelain reservoir and the way it is connected to the manometer tube. It remains to indicate the method by which we have measured

* This variation of pressure corresponds to $0^{\circ} \cdot 7 \mathrm{C}$.

VOL. CXCIV.-A.
its capacity and pressure coefficient and the necessary new determinations of the "dead space."
(a) Capacity of the Porcelain Reservoir.

This was determined by weighing the reservoir empty, and filled with water at 0°. The following are the results of the weighings made:-

Date.	Reservoir empty.	Reservoir filled.	Weight of water.
August 9	261.97474	grams.	grams.
" 10		427.33659	$165 \cdot 36854$
" 11	261.9613 3ั	$427 \cdot 32886$	165.36784
", 11	$261 \cdot 96069$		
$\Rightarrow \quad 12$		127.33735	165.37684
			Mean $=165 \cdot 37107$

The volume occupied by this mass of water at $0^{\circ} \mathrm{C}$, is

$$
V_{0}=165393 \text { cub. centims. }
$$

This value has been taken as the total capacity up to the extremity of the capillary tube, part of which is included in the "dead space."

(b) Ditatation of the Porcelain.

The porcelain reservoir, carefully dried, was connected to the mercury pump, very thoroughly exhausted, and then filled with mercury in vacuo. To the end of the capillary was cemented a glass tube about 1 millim. internal diameter, divided into millimetres, whose calibration corrections and internal volume had beeu previously determined. The whole being placed in melting ice, the level of the mercury was adjusted to a point on this tube, which was carefully noted. Bringing the whole afterwards to 100°, the amount of mercury which escaped was determined by weighing, the necessary corrections being applied to reduce the reading of the meniscus to its original position.

Four determinations were made by this process of the apparent dilatation of mercury in porcelain between 0° and 100°, and a few series of observations were taken at intermediate temperatures. These measurements, about which it is not necessary to enter into further detail, gave after all reductions the following results :-

Temperature.	Dilatation of the reservoir in microlitres, $i . e .$, excess over volume at $0^{\circ} \mathbf{C}$. $25 \cdot 229$ $29 \cdot 995$ $39 \cdot 746$ $49 \cdot 990$$\quad 33 \cdot 87$
$99 \cdot 792$	$40 \cdot 17$
$99 \cdot 796$	$53 \cdot 74$
$99 \cdot 890$	$66 \cdot 85$
$99 \cdot 905$	$147 \cdot 64$
	$147 \cdot 28$
	$148 \cdot 03$

[For the dilatation of mercury, which enters into the calculations, the formula found by one of us ('Procès-verbaux des Séances du Comité International,' 1891, p. 37)

$$
\mathrm{V}_{t}=\mathrm{V}_{0}\left[1+\left(182008 t-11 \cdot 3804 t^{2}+0 \cdot 16921 t^{3}\right) 10^{-9}\right]
$$

was adopted.]
Treated by the method of least squares, these observations give for the cubic dilatation of porcelain the following formula :- -

$$
V_{t}=V_{0}\left[1+0.00000759306 t+0.000000013750 t^{2}\right]
$$

The observations between 0° and 100° which determine the value of the term in t^{2} not being numerous, we can consider only the mean dilatation between the extreme points 0° and 100° as having been determined with sufficient accuracy. As, however, it was of importance to know the second term more exactly, as its influence increases at high temperatures, we made a second determination of the dilatation by means of the Fizeau apparatus. The specimen which served for this determination was prepared from a fragment of the capillary tube of a precisely similar reservoir made at the same time at the Imperial Porcelain Factory at Berlin.

The results of this determination, which comprised 37 observations between the temperatures 2° and 82°, are for the linear expansion

$$
\begin{aligned}
& \alpha_{1}=0.00000268762, \\
& \beta_{1}=0.0000000029873 ;
\end{aligned}
$$

and for the cubical expansion

$$
\begin{aligned}
& \alpha_{2}=0.0000080628 \\
& \beta_{2}=0.000000008983
\end{aligned}
$$

The two methods give practically the same result for the mean dilatation between 0° and 100°; by the weight thermometer we have

$$
\begin{gathered}
\alpha_{1}+100 \beta_{1}=0.00000896871, \\
\mathrm{~N} 2
\end{gathered}
$$

and by the Fizeau method we have

$$
\alpha_{2}+100 \beta_{2}=0.0000089612
$$

Admitting the coefficient β_{2}, deduced from the observations by the Fizeau method, we have calculated the coefficient α_{2} from the relation

$$
\alpha_{2}+100 \beta_{2}=0.00000896871
$$

which gives

$$
\alpha_{2}=0.00000807035
$$

We have thus adopted as our final formula for the cubic expansion of Berlin porcelain

$$
\mathrm{V}_{t}=\mathrm{V}_{0}(1+0.00000807035 t+0.000000008983 t)
$$

(c) Pressure Coefficient of the Porcelain Reservoir.

The measurement of the pressure coefficient of the porcelain reservoir was made in precisely the same way as that of the glass reservoir previously described on p. 75. We determined by three series of observations the variation of volume Δv corresponding to a variation of pressure of 1 millim., obtaining the following results :-
microlitres.
(1) $\Delta v=0.0038035$
(2) $\Delta v=0.0037017$
(3) $\Delta v=0.0037466$

We have adopted the mean of these three determinations, viz. :-

$$
\Delta v=0.003750 \text { microlitre per millim. }
$$

(d) Determination of the "Dead Space."

For this determination we followed exactly the method already described on p. 75. The nine weighings made gave divergences from the mean of four parts per thousand. After all reductions we found for the whole volume of the "dead space"

$$
v=709 \cdot 5 \text { microlitres. }
$$

The effective capacity of the thermometric reservoir being

$$
\mathrm{V}_{0}=164.805 \text { cub. centims }
$$

we have

$$
v / V_{0}=0.004305
$$

This result, which is appreciably higher than the corresponding one for the
reservoir of "verre dur," was employed for the reduction of all the measurements made with the gas thermometer with porcelain reservoir.

XL. First Determinations with Porcelain Gas Thermometer.

The mounting of the gas thermometer being completed, we proceeded to fill the reservoir with nitrogen. The gas was prepared by the process previously described and was thoroughly dried over phosphorus pentoxide. The reservoir was several times pumped out and partially filled with the dry gas, it being heated meanwhile to a temperature of about 250°, and the final filling and adjustment of the pressure was made at the same high temperature.

We give in the following table the measurements of the initial pressure and coefficient of expansion of the nitrogen, made immediately afterwards.

Date.	Initial pressure. H_{0}.	Coefficient. α.
September 18	millims. $524 \cdot 591$	
,, 18	. 619	
,, 19	. 576	
", 19	.	0.0036708
", 20	\cdots	6699
," 20	-592	
", 20	-589	
, 21	-577	
" 21	..	$0 \cdot 0036701$
, 21	\cdots	36694
,, 21	-627	
, 21	-624	
, 22	$\cdot 584$	
, 22	...	$0 \cdot 0036694$
, 22	\cdots	6692
,, 23	-563	
,, 23	-572	
	Mean $=$	$0 \cdot 0036698$

The value here tound for the coefficient of expansion of nitrogen is slightly higher than that previously obtained with the glass reservoir thermometer (0.0036698 instead of 0.0036685).

Before proceeding to the experiments at high temperatures, we thought it advisable to heat the porcelain reservoir to the temperature of ebullition of sulphur, to see if under the actual circumstances prolonged exposure to a high temperature would produce a modification of the initial pressure. As is well known, certain bodies retain traces of water or condensed gases up to very high temperatures, and, as the reservoir had been washed with distilled water, there was some ground for appre-
hension that, in spite of the care taken with the filling, it might possibly have retained traces of water.

After a heating of 26 hours above 400° we found in fact an initial pressure considerably greater than that given above, viz. :-

$$
\begin{aligned}
& \text { millims. } \\
& \text { October 4. } 525359 \\
& 4525 \cdot 361 \\
& \text { 5. } 525 \cdot 341 \\
& \text { „ } 7 \text {. } 525.348 \\
& \text { Mean . . . }=525352
\end{aligned}
$$

Determinations of the coefficient of expansion gave also a value appreciably greater than the one found previously.

From the mean of four experiments we found

$$
\alpha=0.0036740 \text {. }
$$

Our fears having been justified, the thermometer reservoir was again put into communication with the pump and exhausted, being meanwhile heated to a temperature of about 500°. After several successive exhaustions and partial fillings of gas the reservoir was then pumped out very thoroughly, and after remaining vacuous for 24 hours was filled to the proper pressure with very well dried gas. It was maintained all the time at a temperature approaching 500°.

The following measurements of the initial pressure and coefficient of expansion were then made :-

Date.	Initial pressure.	Coefficient.
October 15	\ldots	0.00366855
, 16	...	845
, 16	$528 \cdot 853$	
", 16	- 824	
", 17	-833	
, 17	...	$0 \cdot 00366830$
, 17		934
" 18	$528 \cdot 828$	
" 18	- 806	
" 19	...	$0 \cdot 00366764$
" 19	\ldots	776
" 20	\ldots	769
" 21	$\stackrel{.1}{ } 528.801$	
7	-848	
" 22	-844	
From October 25 to 29, comparisons with thermometer K. 9.		
October 31	528.773	
November 1	$\cdot 781$	
" 1	$\cdot 773$	
" 2	'789	
" 2	\cdots	$0 \cdot 00366783$
$\cdots \quad 3$. 790	742
$\begin{array}{ll}7 & 3 \\ " & 5\end{array}$	$\cdot 790$ $\cdot 734$	
", 7	528.746	
" 10	$\cdot 742$	
" 11	$\cdot 746$	
" 11	$\cdot 739$	
From November 12 to 17, comparisons with thermometer K. 8		
November 18	528.759	
", 18	$\cdot 755$	
" 30	...	$0 \cdot 00366848$
" 30	\ldots	764
December 1	\% $\quad .7$	757
" 1	-735	

From this table it may be seen that the initial pressure diminished during the series of comparisons with K. 9 by about, 0.05 millim. We have assumed for the reduction of the observations that this diminution was proportional to the time. During the comparisons with thermometer K. 8 no sensible diminution of initial pressure was observed.

Comparisons of the Platinum Thermometers with Porcelain Gas Thermometer.
We give in the following table the values of the initial pressure assumed on each
day for the experiments with thermometer K.9. For the coefficient of expansion we have taken the mean of the determinations given above, viz. :-

$$
\alpha=0.00366811 .
$$

Date of comparison.	Initial pressure in millims.
October 25	$528 \cdot 807$
, 26	$528 \cdot 802$
" 27	528.797
\% 28	$528 \cdot 792$
" 29	$528 \cdot 787$

The comparisons are numbered 33 to 53 in the table for K. 9 at the end.
For the calculation of all the comparisons with thermometer K. 8 we have taken as the initial pressure the value 528.747 millims. These comparisons are numbered 73 to 91 in the table for K. 8 at the end.

> Comparisons of Thermometer K.2.

We noticed that during the experiments with K. 8 and K. 9 above the sulphur point the glass tubes of the platinum thermometers were serionsly attacked and showed sigus of softening. Some time previously porcelain tubes had been ordered to replace the glass ones, but owing to the delivery of these being inordinately delayed, we were obliged to relinquish the comparisons we had intended to make with K. 8 and K. 9 at higher temperatures and take in their place a low resistance platinum thermometer, K.2, already provided with a porcelain tube. The initial pressure in the gas thermometer was reduced to 391.88 millims. and a series of 12 comparisons made, the results of which are shown in the table at the end.*

The constants of the gas thermometer were determined in the usual manner before the comparisons. The value found for the coefficient α was 0.00366771 . We were prevented by an accident from redetermining this coefficient of dilatation after the measurements. This is to be regretted, as the preceding determinations showed a systematic diminution in its value which we are unable to explain.

If the coefficient corresponding to an initial pressure of 392 millims. be deduced

[^7]from the law previously found by one of us that the departure of the coefficient from that of a perfect gas varies proportionally to the initial pressure, we have
$$
\alpha=0.0036663
$$

This coefficient would give for temperatures near the sulphur point values about $0^{\circ} \cdot 2$ higher than those deduced by employing the one directly observed.

We have nevertheless adhered to the latter for the calculation of the temperatures of this series of comparisons, in order to avoid the introduction of any hypothesis.

XLI. Explanation of the Tables of Results.

The results of the whole of the comparisons made are given in the tables for each thermometer at the end. In these the experiments are arranged in order of ascending temperature. The first three columns give for each experiment the progressive number, the number in our note-books and the date. Columns IV. and V. give pt and d, the value for d being that deduced from the Callendar formula given on p. 39, assuming the value for δ as determined for each thermometer at the sulphur point, and taking our new value for the boiling-point of sulphur at 760 millims. pressure, namely $445^{\circ} \cdot 27$, given later on p. 101. Column VI. gives the equivalent on the nitrogen scale of the observed pt, as thus calculated, and Column VII. the temperature on the nitrogen scale as given by the gas thermometer. Column VIII. shows the difference between the calculated and observed values, and Column IX. the constancy of the temperature in each experiment as given by the indication of the platinum thermometer.

XLII. Determination of the Bolling-Point of Sulphur.

After ascertaining that it was possible, by means of the bath of fused nitrates, to make accurate comparisons between the platinum and gas thermometers at temperatures up to about 600°, we saw that by making alternately a determination of the resistance of a platinum thermometer at the boiling-point of sulphur, and a comparison with the gas thermometer near the same temperature, we had a means of obtaining a new determination of the boiling-point on the nitrogen scale... We accordingly made, in an apparatus of the form described by Callendar and Griffiths as the "Meyer tube," a number of determinations of the platinum temperature of sulphur-vapour boiling freely under atmospheric pressure. Readings of the barometer were taken simultaneously with those of the platinum thermometer. The reservoir of the platinum thermometer was protected from contact with any condensed sulphur which might flow down to it from the cooler part of the thermometer above, by surrounding it with an asbestos cone perforated with several holes
in the base and sides to permit free circulation of the sulphur vapour within it.* It is essential for the attainment of a constant temperature that the cone should be sufficiently long to completely cover the resistance-spiral and a certain length of the stem immediately above it.

During the earlier experiments we had considerable difficulty with the sulphur tubes owing to their liability to crack on re-heating, after having once been used. We thus found it convenient, when making several consecutive sulphur point determinations, to keep the sulphur just liquid between the different sets of observations, by means of a small by-pass flame. The establishment of a constant temperature in the sulphur apparatus takes a considerable time; from half-an-hour to an hour was generally allowed after insertion of the thermometer. \dagger

The sulphur we used was obtained from Messis. Baird and Tatlock, and was made by Chance's process. Though we made no chemical tests of its purity, we have reason to beheve that the impurities present, if any, exert practically no influence on the boiling-point, as a large number of determinations made at Kew showed no systematic difference in the behaviour of several different samples. Additional evidence of the purity of the sulphur used is afforded by the remarkable steadiness of the temperature of the vapour, when once the equilibrium is established.

Three independent values for the boiling-point of sulphur were obtained under different circumstances. To the first of these, obtained from the preliminary comparisons of thermometer K. 9 with the gas thermometer with reservoir of "verre dur," we attach less weight than to the two subsequent ones, where K. 8 and K. 9 were compared with the gas thermometer fitted with the porcelain reservoir more suited for high temperatures.

We discuss the observations of the later series, taken with K.8, as an example of the method of reduction followed.

The determinations made with this thermometer of the platinum temperature of the boiling-point of sulphur were eight in number, the corresponding pressures varying from 755 to 762 millims. It is obvious that, from the experiments themselves, the platinum temperature corresponding to 760 millims. could be deduced by the method of least squares, but a formula for the variation of the boiling-point with pressure deduced from so few experiments would, however, be liable to error: We, therefore,

[^8]attempted to collect further evidence on the subject, before proceeding to the final reduction of our results.

Callendar and Griffiths in re-determining the boiling-point of sulphur made no attempt to deduce any formula for the variation of this point with pressure, and, in their subsequent work, apply the one deduced by Regnault from his observations made in 1862 .

As the results of this investigation of Regnaulit have been differently interpreted by several observers, it may be worth while here to sitate exactly what experiments Regnault made on the subject. The primary object of his work was to determine the influence of large variations of pressure on the boiling-points of a number of substances, rather than to deduce formulæ representing accurately over a limited range the variation for each substance. He made altogether eight experiments with sulphur at pressures between 250 and 3000 millims., the four nearest to the standard pressure of 760 millims. being as follows:-

In the carrying out of these experiments Regnault says he had considerable difficulty, due to violent boiling and also to superheating of the vapour, especially at high pressures.

From the eight experiments Regnaulit calculated a formula for the change of temperature with pressure over the whole range; from this Griffiths finds the value of $d t / d p$ at 760 millims. to be 0.082 .

It happens, however, that the experiment made at 763 millims. is one, the result of which diverges more from the calculated value than almost any other, and therefore the value to be taken as the boiling-point at 760 millims. is appreciably uncertain.

The most probable value for this point, as deduced from these observations of Regnault, is given by different authorities as $448^{\circ} \cdot 38,448^{\circ} \cdot 34$, and $447^{\circ} \cdot 48$.

In view of this uncertainty, and also of the fact that the Meyer tube apparatus is so entirely different in its construction from that employed by Regnault, we deemed it advisable to obtain some further evidence as to the validity of the application of Regnault's value of $d t / d p$ to our experiments. As our own observations happened to be all made within a small pressure range, we selected from the records of the platinum thermometers in regular use at Kew Observatory, the results of the different determinations of the sulphur-point made with thermometers K. 1 and K.3, and from these, calculated by least squares for each thermometer a formula representing the
variation of $p t$ with pressure, from which, by combination with the known value of $d . p t / d t$, we obtained two concordant values for $d t / d p$ at 760 millims. The mean of these values coincided sufficiently nearly with that of Regnaomt to justify us in adopting the latter for present purposes, and the reduction of our observations to normal pressure is therefore based on the assumption of his value.*

We found that for the thermometers K. 8 and K. 9 the value of $d \cdot p t / d t$, at the sulphur point, was practically identical with the mean of those previously obtained for the older thermometers, and by assuming this number and combining it with the value calculated from Regnault's experiments for $d t / d p$, we obtained $d . p t / d p$ for K. 8 and K. 9.

From this the value of $p t_{s}$, the platinum temperature of the sulphur vapour at 760 millims., was then calculated for each experiment, and the mean value for each series taken.

The platinum temperatures found in these comparisons made with each thermometer near the point 445°, and their corresponding values on the nitrogen scale, were then treated by least squares, to obtain from them the nitrogen temperature equivalent to the value of $p t_{s}$ found previously. Various formule for this calculation were tried, the roost suitable one being found to be

$$
\mathrm{T}_{s}=x+y\left(p t-p t_{s}\right)+z\left(p t-p t_{s}\right)^{2}
$$

where T_{s} is the nitrogen temperature sought corresponding to $p t_{s}$, and x, y and z are constants. \dagger

In this calculation for thermometer K. 8 were included the seven experiments numbered 85 to 91 in the table, and in the calculation weights were assigned to the individual experiments according to the constancy of the temperature. On substituting in the original equations of condition the greatest residual was found to be $0^{\circ} .034$, showing a satisfactory concordance between the values for T_{s} given by the different comparisons.

[^9]From the different series of experiments from which a value can be deduced by this method we have

$$
\begin{aligned}
& \text { 1.st Series K. } 9 \text { and glass reservoir } \mathrm{T}_{s}=445 \cdot 27 \\
& \text { 2nd , K. } 9 \text {,, porcelain , } \mathrm{T}_{s}=445.26 \\
& 3 \mathrm{rl} \quad \text {, K. } 8 \quad, \quad,, \quad, \quad \mathrm{~T}_{*}=445 \cdot 29 \\
& \text { Mean }=445 \cdot 27
\end{aligned}
$$

Although we think that the extremely close agreement of these values is to some extent fortuitous, and may give an exaggerated idea of the accuracy attained in our experiments, we think that until more is known concerning the expansion at high temperatures of the material used as thermometric reservoir, $445^{\circ} \cdot 27$ may be taken as a close approximation to the temperature attained by the vapour of pure sulphur boiling freely under a pressure of 760 millims. in the apparatus above described. Whether this represents the true temperature, or whether the indications of the thermometer are affected to any appreciable extent by radiation and other disturbing influences, we have not attempted to consider in detail. We contented ourselves with ascertaining that the form of apparatus we used is capable of giving consistent results, and that the temperature attained in it by the vapour after the steady state has been reached really alters with the barometric pressure. We noticed that the barometer we used, and those platinum thermometers which were provided with glass envelopes, appeared to follow changes at very nearly the same rate. Considering that the observations of the boiling-point were only made when the barometer appeared to be fairly steady, we think that any error in the measurement of the corresponding temperatures and pressures due to difference of lag of the two instruments must have been very small.

XLIII. Reduction of Results to Normal Scale.

In view of the lack of data as to the difference between the various gas scales at high temperatures, we are unable to reduce the results of our comparisons, and the value found for the boiling-point of sulphur, to what they would have been on the scale of the hydrogen thermometer.*

[^10]Nor is it easy to apply to the results on the nitrogen scale the correction necessary to bring them to what should have been found had we been able to employ an initial pressure of 1 metre instead of 528 millims.

As has been pointed out, all our gas temperatures are referred to the constantvolume scale. The connection between this and the constant-pressure scale, and the corrections to be applied to each to reduce them to the absolute gas scale, have been calculated by Lord Kelvin and Dr. Joule from their experiments on the flow of gases through porous plugs. Various formulæ giving this correction have, however, been proposed by Kelvin and Joule themselves, and by others. In a recent paper by Rose-Innes* a type of formula is deduced from the same observations, which applies to the results found with all the three gases experimented upon by Kelvin and Joule. Rose-Innes \dagger says, "To the degree of approximation to which we are working, therefore, there is no thermodynamic correction needed for a constantvolume gas thermometer. There may be a correction involving squares of small quantities, which would appear on a nearer approximation. Such a correction, however, would not be worth taking into account in the case of a thermometer constructed with air or hydrogen, as the unavoidable errors of experiment would certainly be much larger than the correction."

Our result for the boiling-point of sulphur is about $0^{\circ} \cdot 7$ higher than that of Callendar and Griffiths, but it may be well to point out here that the two values are not necessarily inconsistent. The value of Callendar and Griffiths is given as $444^{\circ} .53$ for the boiling-point of sulphur on the constant-pressrue air scale, the air being taken under an initial pressure of 76 centims.

Our value $445^{\circ} \cdot 27$ we give as the equivalent of the same temperature on the scale of the constant-volume nitrogen thermometer, the nitrogen being taken under the initial pressure of 528 millims. It is impossible, we think, at present to say from
hydrogen thermometers varies directly as the initial pressure. Consequently, in the comparisons between 100° and 200°, where the initial pressure was about 800 millims., the difference between the two scales would be diminished to about four-fifths, and in the comparisons between 200° and 455° to about half of what it would have been with an initial pressure of one metre.

We may also remark that the coefficient of dilatation of air under constant pressure

$$
\alpha=0.0036749
$$

determined by Callendar and Griffiters and employed by them to calculate the temperatures in their observations, is sensibly higher than that which results from the experiments of Regenauta,

$$
\alpha=0.0036700
$$

or the value obtained some time ago by one of us,

$$
\alpha=0.0036708
$$

[^11]theory what difference should be found between the results in the two cases. Callendar and Griffiths point out, however, that the few observations they made, using their instrument as a constant-volume thermometer, gave a result for the sulphur point about half a degree higher than that found on the constant-pressure scale. If confirmed, this would account for more than half of the difference between the two results.

It may be of interest to calculate what differences there would be between temperatures expressed on Callendar's air scale and the same temperatures on the nitrogen scale based on the adoption of our value for the boiling-point of sulphur, and on the validity of the δ formula. The adoption of the new value for the sulphur boiling-point- $0^{\circ} 74$ higher than that of Callendar and Griffiths would raise a δ of 1.500 to 1.5423 . The differences between the temperatures deduced by admitting the validity of the parabolic formula in each case are shown in the following table:-

$\mathrm{T}_{(\text {Call. })}$.	.	-50°	0°	25°	50°	75°	100°	200°	400°	600°	1000°
$\mathrm{T}_{(\text {nex })}-\mathrm{T}_{(\text {Call. })}$.	$+0^{\circ} .03$	0°	$-0^{\circ} .008$	$-0^{\circ} .011$	$-0^{\circ} .008$	0°	$+0^{\circ} .09$	$+0^{\circ} .57$	$+1^{\circ} .5$	$+5^{\circ} \cdot 3$.	

From the results of our comparisons we might calculate a formula giving the magnitude of a small corrective term to be applied to the temperatures as deduced by the parabolic formula to reduce them to the scale of our nitrogen thermometer. This correction, however, is not the same for the different platinum thermometers we used, and an examination of the differences given in Column VIII. of the tables shows that in some places the corrective terms for the two thermometers differ by a quantity of about the same order as the corrections themselves.

Since, as we have previously explained, our own nitrogen scale is somewhat arbitrary, and its relation to the normal scale of the hydrogen thermometer is only known over a small part of the range covered by the experiments, we would suggest that, for the present, temperatures deduced by the platinum thermometer should be reduced by a parabolic formula. The results thus obtained can always be recalculated and expressed on any scale which may subsequently be adopted as the standard scale for high temperatures.

Although we found it impossible to use hydrogen at high temperatures in our gas thermometer with glass reservoir owing to some chemical action taking place between it and the glass, yet it is quite possible that a suitable material may be found for the construction of a thermometer reservoir in which this gas may be employed at high temperatures.

Until further investigations have been made as to the relations of the various gas scales at high temperatures, and as to the influence of the initial pressure and the effect of impurities and traces of water vapour in the gases employed, and until exact determinations have been made up to high temperatures of the coefficient of expansion of the material used as thermometric reservoir, we think that for the
purposes of high range thermometry a scale deduced by the parabolic formula from that of the platinum thermometer will suffice. In the present state of our knowledge any attempt to improve on such a thermometric scale would be attended with such uncertainties as would probably render it futile.
XLIV. Conclusion.

In conclusion, the authors are desirous of expressing their obligation to Dr. Benort, Director of the Bureau International des Poids et Mesures, to Professor Carey Foster, Chairman of the Kew Observatory Sub-Committee on Thermometry, and to Dr. Chree, Superintendent of the Observatory, for continued advice and help throughout the whole of their work. For the loan of several pieces of apparatus they are indebted to Professor Schuster of Manchester, and to M. Broca of the Ecole de Médecine, Paris, and for help with the calculations to M. Mauder and to Mdlles. de Bauller and Junot, Assistants at the Bureau Intemational, and to all these they tender their sincere thanks.
Table I.-Summary of Experiments with Thermometer K.8. $\delta=1 \cdot 5435$.
Note.-In the column headed "Observed value on gas scale," for the experiments 1-20 the gas referred to is hydrogen; for all subsequent

I. Reference number.	II. Number in book.	III. Date of experiment.	IV. $p t$.	V. d.	VI. Calculated value on nitrogen scale.	VII. Observed value of gas scale.	VIII. Difference calculatedobserved.	IX. Change of temperature during experiment. 1 centim. $=\cdot 04^{\circ}$, approximately.
First Series.-Comparisons against mercury thermometers in alcohol bath.								
1	20	$\begin{gathered} 1897 \\ \text { Dec. } 7 \end{gathered}$	$-23 \cdot 897$	+ 448	- $23 \cdot 449$	$-23 \cdot 446$	- $\cdot 003$	First half fall 5 centims., second half constant
2	19	,, 14	-19.479	$+\cdot 352$	-19•127	-19.134	+ $\cdot 007$	Small oscillations
3	18	" 7	- 10.851	+ 182	-10.669	- $10 \cdot 672$	$+\cdot 003$	Fall $2 \frac{1}{2}$ centims.
Second Series.--Comparisons against mercury thermometers in water bath.								
		1897						
4	17	Nov. 15	+ $2 \cdot 133$	- 032	$2 \cdot 101$	+ 2.096	$+\cdot 005$	Rise 2 centims.
5	16	, 8	Excluded on account of moisture being discovered in the thermometer
6	8	Sept. 23	$5 \cdot 204$	-. 075	$5 \cdot 129$	+ $5 \cdot 113$	$+\cdot 016$	Very slow fall, then rise
7	15	Nov. 15	$7 \cdot 488$	- 106	$7 \cdot 382$	+ 7.364	+.018	Slow rise 1.5 centim.
8	6	Sept. 6	$10 \cdot 300$	- 140	$10 \cdot 160$	+10.144	+.016	Slow rise, then fall. Compensation
9	7	, 6	$15 \cdot 050$	- 196	$14 \cdot 854$	+14.843	+.011	Rise $2 \frac{1}{2}$ centims.
10	1	Aug. 24	Excluded on account of being done without reversing the battery current
11	3	Sept. 4	$20 \cdot 941$	- 253	20.688	+20.676	+ $\cdot 012$	Rise $3 \frac{1}{2}$ centims.
12	2	Aug. 28	$25 \cdot 350$	- 291	25.059	+25.050	+.009	Slow fall, then rise 4 centims.
13	12	Nov. 9	$25 \cdot 520$	- 292	$25 \cdot 228$	+25.217	+.011	Very small oscillations
14	13	", 10	$30 \cdot 410$	- 326	$30 \cdot 084$	$+30 \cdot 072$	+.012	Very small oscillations
15	5	Sept. 4	$36 \cdot 210$	- 356	$35 \cdot 854$	+35.855	-. 001	Rise $4 \cdot 5$ centims.
16	4	," 4	$41 \cdot 543$	- 375	$41 \cdot 168$	+41.172	-. 004	Compensation
17	14	Nov. 11	$50 \cdot 425$	- 386	$50 \cdot 038$	$+50 \cdot 037$	+.001	Very small oscillations
Third Series.-Comparisons against mercury thermometers in oil bath.								
		1897						
18	10	Oct. 28	$59 \cdot 553$	- 373	$59 \cdot 180$	+59•181	-. 001	Rise 2 centims.
19	11	,, 28	$70 \cdot 582$	- 323	$70 \cdot 259$	+70.262	-. 003	Small oscillations
20	9	, 16	$78 \cdot 397$	- 264	$78 \cdot 133$	+78•141	- 0008	Rise 2 centims.

VOL. CXCIV.-A,
Table I. (continued).—Summary of Experiments with Thermometer K.8. $\delta=1.5435$.
Note.-In the column headed "Observed value on gas scale," for the experiments $1-20$ the gas referred to is hydrogen ; for all subsequent

		 + + $11+111+$	+ 1 \|	1 1 + + + + + + + +
			앙아 0 	
$B \dot{\sim}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$		$i \quad i++++++++++$	
出 実	$\begin{gathered} \tilde{B} \\ \text { E } \end{gathered}$		 	

Table I．（continued）．－Summary of Experiments with Thermometer K．8．

		$\stackrel{20}{\underset{+}{7} \stackrel{1}{7}+}$		
	$\begin{aligned} & \text { 荨 } \\ & . \exists \\ & \tilde{\#} \\ & 0 \end{aligned}$		\sharp $\#$ \＃ \＃	 ボ
$\cdots 3$		$\begin{array}{ll} 0 \infty \\ \dot{\infty} & \infty \\ \dot{\infty} & \infty \\ + & \dot{-} \\ ++ & + \end{array}$		
必 或				
	镸	No	咢荡	
		온		

Table II．－Summary of Comparisons with Platinum Thermometer K．9．$\quad \delta=1.5472$ ．
Note．－In the column headed＂Observed value on gas scale，＂for experiments 1－6 the gas referred to is hydrogen；for all subsequent

				мо！ุезиәдшоо 	
					1 1 1 1 1＋＋＋＋
	苞	우ㅇㅜㅜ웅		NザがositN $\dot{\circ} \dot{\circ} \dot{\infty} \dot{\circ} \dot{\circ} \dot{\circ} \dot{\circ} \dot{O} \dot{-} \dot{=}$	
		잉용ㅇㅇㅇㅇㅇㅇㅇㅇ 		 	$\stackrel{\leftrightarrow}{-1} \dot{\sim}$
$\stackrel{\square}{8}$		 । 1 । 1 ।	E゙ँ	$11111++$	 ค．
我		응후웅		்்க்க்க்க்	
				90ㅇon＝	
		－Nostise			

Note.-In the column headed "Observed value on gas scale," for experiments $1-6$ the gas referred to is hydrogen; for all subsequent

			$+++++++++++++++++++++$
	$\begin{aligned} & \text { 邑 } \\ & . E \end{aligned}$		
12			
E			
	Hig		
	荡		

Table III.—Summary of Observations with Platinum Thermometer K.2. $\quad \delta=1.554$.

Reference number.	II. Number in book.	III. Date.	IV. $p t$.	$\begin{aligned} & \mathrm{V} . \\ & d . \end{aligned}$	VI. T calculated on nitrogen scale.	VII. T observed on nitrogen scale.	VIII. Calculated- observed.	IX. Constancy of temperature in the experiment. 1 centim. $=\cdot 2^{\circ}$, approximately.
		1898						
1	4	Dec. 16	$403 \cdot 11$	+21.41	$424 \cdot 52$	$424 \cdot 27$	+ 25	Steady, then rise of 8 centim
2			$430 \cdot 62$	+25.20	$455 \cdot 82$	455.60	+ $\cdot 22$	Fall $\cdot 5$ centim., then steady
3	10	, 16	$431 \cdot 25$	+25.29	456.54	$456 \cdot 36$	+ 18	Fall in first half 1 centim., in second 7 centim.
4	9		$437 \cdot 34$	+26.18	463.52	$463 \cdot 17$	+ 35	Rise $2 \cdot 3$ centim.
5		," 13	$437 \cdot 72$	+26.24	$463 \cdot 96$	$463 \cdot 52$	+ 44	Constant
6	8	", 15	$447 \cdot 48$	+27.70	$475 \cdot 18$	475.04	+ 14	Slow rise
7	11	" 14	$489 \cdot 20$	+34.48	523.68	523.42	+ 26	Fall 4 centim., then rise 9 centim.
8	12	, 14	490.55	+34.71	$525 \cdot 26$	525.05	+ 21	Fall 1.4 centim.
9	6	, 13	493.77	+ $35 \cdot 26$	529.03	528.62	+ 41	Fall 2 centim., then rise 1 centim.
10	3	, 13	494.64	+ $35 \cdot 42$	530.06	529.68	+ 38	Rise $2 \cdot 3$ centims., then fall. Compensated
11	2	," 14	$541 \cdot 92$	+ 44.29	$586 \cdot 21$	586.05	+ 16	Fall 1.6 centim.
12	1	" 14	$542 \cdot 23$	+4435	586.58	$586 \cdot 46$	+ $\cdot 12$	Rise 2.5 centims., then fall 5 centim.

APPENDIX I.

With a view to facilitating the calculations involved in platinum thermometry, we give, as an appendix, several tables calculated by Mdlle. de Bauller and M. Maudet, of the Bureau International, which have proved of great utility during our work.

Table I. gives from -40° to 460° the values of $\left[\left(\frac{T}{100}\right)^{2}-\frac{T}{100}\right]$, and the product of this quantity into a number of different values of δ. It is used for deducing $p t$ from given values of T.

Table II. is for the resolution of the converse problem, and gives T corresponding to different values of $p t$ for thermometers having a δ between 1.54 and 1.57 . At the side are given differences for interpolation between the whole degrees.

Table III. is for the reduction of the steam points, and is extracted from the table calculated by M. Broch from the results of Regnault for the boiling-point of water under different pressures.

Table IV. is for reducing to its equivalent in mercury pressure the excess of pressure of the steam in a boiling-point determination, as measured in millimetres of water.

Table V. is for converting to the platinum scale the temperature of the steam as obtained from Table III.

As an example of the use of some of these tables, we give the following :-
Let the resistance in ice of a certain platinum thermometer whose $\delta=1.500$ be 2.57827 ohms, and let its resistance in steam be 3.57298 ohms , the barometric height at the time, corrected for temperature and reduced to sea level and latitude 45°, being 749.96 millims., and the excess of the steam pressure over that of the atmosphere being 1.8 millim. of water. Find the resistance corresponding to 100°.

From Table IV. the mercury pressure corresponding to 1.8 millim. of water $=0.13$ millim. Adding this to the barometric height we obtain 750.09 millims. as the total pressure of the steam. Then from Table III. we obtain, as the temperature of the steam at this pressure, $99^{\circ} \cdot 6343$.

For $\delta=1.500$ we find from Table V. that the platinum temperature corresponding to $99^{\circ} \cdot 6343$ is $99^{\circ} \cdot 6343+0^{\circ} \cdot 0055=99^{\circ} \cdot 6398$,

Therefore the change of resistance between the
Ohms. platinum temperatures 0° and $99^{\circ} 6398$ is . $(3.57298-2.57827)=0.99471$

Therefore, resistance at 100°. $=3.57658$
We append also the various formulæ showing the relations of each ot the four quantities $\mathrm{T}, p t, d$, and δ to the others, viz:-

$$
\begin{aligned}
& d \equiv \mathrm{~T}-p t=\delta\left[\left(\frac{\mathrm{T}}{100}\right)^{2}-\frac{\mathrm{T}}{100}\right]=\left(\frac{5000}{\delta}+50\right)-p t-\sqrt{\left(\frac{5000}{\delta}+50\right)^{2}-\frac{10000 p t}{\delta}}, \\
& \mathrm{~T}=p t+d=\left(\frac{5000}{\delta}+50\right)-\sqrt{\left(\frac{5000}{\delta}+50\right)^{2}-\frac{10000 p t}{\delta}}, \\
& p t=\mathrm{T}-d=\mathrm{T}-\delta\left[\left(\frac{\mathrm{T}}{100}\right)^{2}-\frac{\mathrm{T}}{100}\right] .
\end{aligned}
$$

$\begin{aligned} & \dot{8} \\ & \stackrel{+}{-} \\ & \stackrel{1}{\infty} \\ & \hline \end{aligned}$	 $111111111111111111111111+++++++++++$
8 $\stackrel{8}{8}$ $\stackrel{10}{10}$ 10	 $1111111111111111111111111+t++++t+t+t$
8 98 9 10 10	 $111111111111111111111111+t+t+t+t+t+t$
$\begin{aligned} & \dot{0} \\ & \stackrel{1}{2} \\ & \stackrel{11}{11} \\ & \hline \end{aligned}$	 $111111111111111111111111111+++++++++++$
$\begin{aligned} & \dot{8} \\ & \stackrel{0}{0} \\ & \stackrel{11}{10} \\ & \infty \end{aligned}$	 $111111111111111111111111+++++++++++$
$\begin{gathered} \dot{8} \\ \stackrel{0}{0} \\ \stackrel{1}{4} \\ i \end{gathered}$	 $111111111111111111111111+++++++++++$
$\stackrel{\dot{\circ}}{\stackrel{\circ}{0}}$	 $111111111111111111111111111+t+t+++t+t+t$
$\begin{aligned} & \dot{8} \\ & \stackrel{1}{9} \\ & \stackrel{11}{11} \\ & 0 \end{aligned}$	皐的
$\begin{aligned} & \dot{0} \\ & \stackrel{4}{8} \\ & \ddot{4} \\ & \ddot{0} \end{aligned}$	 $1111111111111111111111111+++++++++++$
8 $\stackrel{8}{8}$ $\stackrel{11}{4}$ 0	
$\begin{array}{r} +8 \\ -1 \\ \approx 18 \\ -18 \\ \hline \end{array}$	 $111111111111111111111111+++++++t+++$
E	

Q 2

$\begin{gathered} 8_{0} \\ 1 \\ 1 \end{gathered}$	$\begin{aligned} & \dot{8} \\ & 8 \\ & \stackrel{8}{-1} \\ & 11 \\ & 10 \end{aligned}$	 	
$\frac{\infty}{\infty}$	$\begin{aligned} & \dot{8} \\ & \underset{N}{\mathscr{S}} \\ & \underset{i}{\\|} \\ & i \end{aligned}$	 	
$\begin{gathered} 11 \\ 3 \\ \frac{8}{8} \end{gathered}$		 	
$\begin{array}{r} 8 \\ 8 \\ 4 \\ 0 \\ 0 \\ \hline 18 \end{array}$	$$	 $+++++++++++t+t++t++++t++++t+++++++t$	
$\begin{gathered} 0 \\ \text { Be } \\ \text { B } \\ 0 \\ 0 \end{gathered}$	$$	 स $+++++++t++++++++++t+++t+++++++++++$	
-8	$\begin{aligned} & \dot{8} \\ & 10 \\ & \stackrel{1}{0} \\ & 11 \\ & c \end{aligned}$	 	
		 $++++++++++t+++t+++++++t+++++t+++t+t$	
$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 6 \\ & 6 \\ & 4 \end{aligned}$	$$	 $+++++++++++++++++++++t++t+t++++++t+$	
-	$\begin{aligned} & \dot{0} \\ & \stackrel{1}{20} \\ & \underset{-1}{11} \\ & 0 \end{aligned}$	 Hた $+++++++++++++++t++++++++++t+++++t++$	
	8 8 18 18 0	 सழ	
$\underbrace{8}_{4-1}$	$\begin{array}{r} 8 \\ +\begin{array}{l} 8 \\ \hline 18 \\ \cdots \\ \cdots \end{array} \\ \hline 18 \\ \hline \end{array}$	 	
$\begin{aligned} & A \\ & A \\ & A \\ & A \\ & 4 \end{aligned}$	EH	 	

$\left[\left(\frac{T}{100}\right)^{2}-\frac{T}{100}\right]$.
Deduced from the formula $d=\delta$

$\dot{\circ}$ $\stackrel{\circ}{\circ}$ II 0		
$\begin{aligned} & \dot{8} \\ & \stackrel{8}{\oplus} \\ & \stackrel{1}{\\|} \\ & 0 \\ & \hline \end{aligned}$	 	
8 $\stackrel{8}{8}$ $\stackrel{11}{10}$ \cdots		
$\begin{aligned} & \dot{8} \\ & \stackrel{0}{0} \\ & \stackrel{1}{1} \\ & 0 \\ & \hline \end{aligned}$		
8 $\stackrel{8}{6}$ $\stackrel{11}{10}$ 0 0		
\%		
¢		
¢	 	
$\begin{aligned} & w i o \\ & \cdots 1 \\ & \cdots+10 \\ & \cdots \end{aligned}$		
E		

Appendix Table II.--For calculating T when $p t$ and δ are known, employing the formula $T=\left(\frac{5000}{\delta}+50\right)-\sqrt{\left(\frac{5000}{\delta}+50\right)^{2}-\frac{10000 p t}{\delta} .}$

pt.	'T.					
	$i=1.54$.	$i=1 \cdot 55$.	$\delta=156$.	$\delta=1.57$.		
-50	--48.879	-48.872	- 48.865	--48.858	970	
--49	-47.909	- 47.902	-47.895	-47.888		
-48	-46.938	-46.931	- 46.925	-46.918	1	97
-47	- 45.967	- $45 \cdot 960$	- $45 \cdot 954$	- $45 \cdot 948$	2	194
-46	-44.996	-44.989	- 44.983	-44.977	3	291
-45	- 44.024	-44.018	- 44.012	-44.006	4	388
-44	-43.052	-43.046	- 43.040	-43.034	5	485
-43	- 42.079	-42.074	-42.068	- 42.062	6	582
- 42	- 41.106	-41.101	- 41.096	--41.090	7	679
-41	- $40 \cdot 133$	-40.128	- $40 \cdot 123$	- $40 \cdot 118$	8	776
-40	- $39 \cdot 160$	- $39 \cdot 155$	- $39 \cdot 150$	$-39 \cdot 145$	9	873
-39	- $38 \cdot 187$	- $38 \cdot 182$	- 38.177	$-38 \cdot 172$		
--38	-37.214	-37.209	-37.204	- $37 \cdot 199$		
-..37	- $36 \cdot 240$	-36.235	- $36 \cdot 230$	- 36.225		
-36	- 35.266	-35.261	- $35 \cdot 256$	- 35.251		
-35	-34.291	- $34 \cdot 287$	- $34 \cdot 282$	- 34.277		
-34	-33.316	- 33.312	- $33 \cdot 308$	-33.303		
- 33	-32.34.1	- 32.337	- 32.333	-32.329		
-32	-31.366	- 31.362	- $31 \cdot 358$	-31.354		
-31	- $30 \cdot 390$	- $30 \cdot 386$	- 30.382	- $30 \cdot 378$		
-30	-29-414	$-29 \cdot 410$	- $29 \cdot 406$	- $29 \cdot 402$		
--29	- 28.438	- 28.434	-28.430	-28.426		
-28	- $27 \cdot 461$	-27.458	$-27 \cdot 454$	- 27.450		
-27	--26.484.	-26.481	-26.478	-26.474		
-26	- $25 \cdot 507$	--25.504	-25.501	- 25.498		
-25	- 24.530	- 24.527	-24:524	-24.521		
- 24	--23.552	-23.549	- 23.546	--23.544		
- 23	- 22.574	--22.571	-22.568	--22.566		
- 22	-21.596	- 21.593	- 21.590	- 21.588		
-21	- 20.617	--. 20.615	--20.612	- $20 \cdot 610$		
--20	- $19 \cdot 638$	-. 19.636	$\cdots 19.634$	- 19.632		
-19	- 18.659	- $-18 \cdot 657$	- 18.655	- 18.653		
-.. 18	$\cdots 17.680$	- 17.678	- 17.676	- 17.674		
- 17	- 16.700	- 16.698	- 16.697	-16.695		
- 16	- $15 \cdot 720$	- $15 \cdot 718$	- 15.717	-15.716	1	98
-15	--14.740	- -14.738	-14.737	--14.736	2	196
--14	-13.759	- 13.758	- 13757	--13756	3	294
-18	- 12.778	- 12.777	- 12.776	-12775	4	392
-12	- 11.797	- 11.796	-11795	-11.794	5	490
-11	- 10.816	-10.815	- 10.814	- $10 \cdot 813$	${ }_{6}$	588
--10	- 9.834	-- $9 \cdot 833$	- 9.832	- 9.831	7	686
-- 9	-- 8.852	- 8.851	- 8.850	- 8.849	8	784
- 8	- 7.870	- $7 \cdot 869$	- 7.868	- 7.867	9	882
-7	- 6.887	- 6.886	- 6.886	- 6.885		
- 6	--5.904	--5.903	- 5.903	- 5.903		
-5	- 4.921	- 4.920	- 4.920	- 4.920		
- 4	- 3.937	- 3.937	- 3.937	--3.937		
- 3	- 2.953	- 2.953	- 2.953	- $2 \cdot 953$		
- 2	- 1.969	- 1.969	- 1.969	- 1.969		
- 1	- 0.985	- 0.985	- 0.985	- 0.985		

Appendix Table II. (continued).-For calculating T when $p t$ and δ are known, employing the formula $T=\left(\frac{5000}{\delta}+50\right)-\sqrt{\left(\frac{5000}{\delta}+50\right)^{2}-\frac{10000 p t}{\delta}}$.

$p t$	T.					
	$\delta=1 \cdot 54$.	$\delta=1.55$.	$\delta=1 \cdot 56$.	$\delta=1.57$.		
0	$0 \cdot 000$	$0 \cdot 000$	$0 \cdot 000$	0.000		
1	0.985	0.985	0.985	0.985		
2	1.970	1.970	1.970	1.970		
3	2.955	$2 \cdot 955$	$2 \cdot 955$	2.955		
4	3.941	3.941	3.941	$3 \cdot 941$		
5	4.927	$4 \cdot 927$	$4 \cdot 927$	$4 \cdot 927$		
6	$5 \cdot 914$	$5 \cdot 913$	$5 \cdot 913$	$5 \cdot 913$		
7	$6 \cdot 901$	6.900	$6 \cdot 899$	6.899		
8	$7 \cdot 888$	$7 \cdot 887$	$7 \cdot 886$	$7 \cdot 885$		
9	8.875	8.874	8.873	8.872		
10	$9 \cdot 863$	$9 \cdot 862$	9.861	$9 \cdot 860$		
11	$10 \cdot 851$	$10 \cdot 850$	$10 \cdot 849$	$10 \cdot 848$		
12	11.839	11.838	11.837	11.836		
13	12.827	12.826	$12 \cdot 825$	$12 \cdot 824$		
14	13.816	13815	13814	13.813		
15	$14 \cdot 805$	$14 \cdot 804$	14.803	14.802		
16	$15 \cdot 795$	$15 \cdot 794$	15.792	15.791	990	
17	16.785	16.784	16.782	16.780		
18	17.775	$17 \cdot 774$	$17 \cdot 772$	17.770	1	99
19	18.765	18.764	18.762	18.760	2	198
20	19756	19.754	19.752	19.751	3	297
21	20.747	$20 \cdot 745$	$20 \cdot 743$	$20 \cdot 741$	4	396
22	21.738	$21 \cdot 736$	21.734	21.732	5	495
23	22.730	$22 \cdot 728$	22.726	$22 \cdot 724$	6	594
24	23.722	$23 \cdot 720$	23.718	$23 \cdot 716$	7	693
25	$24 \cdot 714$	$24 \cdot 712$	$24 \cdot 710$	$24 \cdot 708$	8	792
26	$25 \cdot 706$	25.704	$25 \cdot 702$	$25 \cdot 700$	9	891
27	$26 \cdot 699$	26.697	$26 \cdot 695$	26.693		
28	$27 \cdot 692$	$27 \cdot 690$	$27 \cdot 688$	$27 \cdot 686$		
29	$28 \cdot 685$	$28 \cdot 683$	$28 \cdot 681$	28.679		
30	$29 \cdot 679$	$29 \cdot 677$	$29 \cdot 675$	29.673		
31	30.673	30.671	$30 \cdot 669$	30.667		
32	31.667	31.665	31.663	$31 \cdot 661$		
33	$32 \cdot 661$	$32 \cdot 659$	32.657	$32 \cdot 655$		
34	$33 \cdot 656$	33.654	33.652	33.650		
35	$34 \cdot 651$	$34 \cdot 649$	34.647	34.645		
36	35.646	35.644	35.642	35.640		
37	$36 \cdot 642$	$36 \cdot 640$	$36 \cdot 638$	$36 \cdot 636$		
38	37.638	$37 \cdot 636$	37.634	$37 \cdot 632$	1000	
39	38.634	$38 \cdot 632$	38.630	38.628		
40	$39 \cdot 631$	$39 \cdot 629$	$39 \cdot 627$	$39 \cdot 625$		
41	$40 \cdot 628$	$40 \cdot 626$	40.624	$40 \cdot 622$,	100
42	41.625	$41 \cdot 623$	41.621	41.619	2	200
43	$42 \cdot 623$	$42 \cdot 621$	$42 \cdot 619$	42.617	3	300
44	$43 \cdot 621$	$43 \cdot 619$	$43 \cdot 617$	$43 \cdot 615$	4	400
45	$44 \cdot 619$	$44 \cdot 617$	$44 \cdot 615$	$44 \cdot 613$	5	500
46	$45 \cdot 617$	$45 \cdot 615$	45.613	$45 \cdot 611$	6	600
47	$46 \cdot 616$	$46 \cdot 614$	$46 \cdot 612$	$46 \cdot 610$	7	700
48	$47 \cdot 615$	$47 \cdot 613$	$47 \cdot 611$	$47 \cdot 609$	8	800
49	$48 \cdot 615$	$48 \cdot 613$	$48 \cdot 611$	$48 \cdot 609$	9	900

Appendix Table II. (continued).-For calculating T when $p t$ and δ are known, employing the formula $T=\left(\frac{5000}{\delta}+50\right)-\sqrt{\left(\frac{5000}{\delta}+50\right)^{2}-\frac{10000 p t}{\delta}}$.

$p t$.	T.					
	$\delta=1 \cdot 54$.	$\hat{\delta}=1 \cdot 55$.	$\hat{o}=1.56$.	$\delta=1.57$.		
50	$49 \cdot 615$	$49 \cdot 613$	$49 \cdot 611$	$49 \cdot 609$	1000	
51	$50 \cdot 615$	$50 \cdot 613$	50.611	$50 \cdot 609$		
52	$51 \cdot 615$	$51 \cdot 613$	$51 \cdot 611$	$51 \cdot 609$	1	100
53	$52 \cdot 616$	$52 \cdot 614$	$52 \cdot 612$	52.610	2	200
54	$53 \cdot 617$	$53 \cdot 615$	53.613	$53 \cdot 611$	3	300
55	$54 \cdot 619$	$54 \cdot 617$	$54 \cdot 615$	54.613	4	400
56	$55 \cdot 621$	$55 \cdot 619$	55.617	$55 \cdot 615$	5	500
57	$56 \cdot 623$	$56 \cdot 621$	$56 \cdot 619$	$56 \cdot 617$	6	600
58	$57 \cdot 625$	$57 \cdot 623$	57.621	$57 \cdot 619$	7	700
59	$58 \cdot 627$	$58 \cdot 625$	58.623	$58 \cdot 621$	8	800
60	$59 \cdot 630$	$59 \cdot 627$	$59 \cdot 625$	59.623	9	900
61	$60 \cdot 633$	$60 \cdot 630$	$60 \cdot 628$	$60 \cdot 626$		
62	$61 \cdot 636$	$61 \cdot 633$	$61 \cdot 631$	$61 \cdot 629$		
63	$62 \cdot 639$	$62 \cdot 637$	$62 \cdot 635$	$62 \cdot 633$		
64	$63 \cdot 643$	$63 \cdot 641$	$63 \cdot 639$	$63 \cdot 637$		
65	$64 \cdot 648$	$64 \cdot 646$	$64 \cdot 644$	$64 \cdot 642$		
66	$65 \cdot 653$	$65 \cdot 651$	$65 \cdot 649$	$65 \cdot 647$		
67	$66 \cdot 658$	$66 \cdot 656$	$66 \cdot 654$	$66 \cdot 652$		
68	$67 \cdot 663$	$67 \cdot 661$	$67 \cdot 659$	$67 \cdot 65$		
69	$68 \cdot 669$	$68 \cdot 667$	$68 \cdot 665$	$68 \cdot 6 \mathrm{~s}$		
70	$69 \cdot 675$	$69 \cdot 673$	$69 \cdot 671$	$69 \cdot 669$		
71	$70 \cdot 681$	70.679	70.677	70.675		
72	$71 \cdot 687$	$71 \cdot 685$	71.683	71.681		
73	$72 \cdot 694$	72.692	72.690	72.688		
74	$73 \cdot 701$	73.699	$73 \cdot 697$	$73 \cdot 695$		
75	$74 \cdot 709$	74.707	74.705	$74 \cdot 703$		
76	$75 \cdot 717$	$75 \cdot 715$	$75 \cdot 713$	$75 \cdot 711$		
77	76.725	76.723	$76 \cdot 721$	$76 \cdot 719$		
78	$77 \cdot 734$	$77 \cdot 732$	77.730	77:728		
79	78.743	$78 \cdot 741$	78.739	78.737		
80	$79 \cdot 752$	$79 \cdot 750$	$79 \cdot 748$	$79 \cdot 746$	1010	
81	$80 \cdot 761$	$80 \cdot 759$	$80 \cdot 757$	$80 \cdot 755$		
89	$81 \cdot 771$	$81 \cdot 769$	81.767	81.765		
83	82.781	$82 \cdot 779$	82.777	82.775	1	101
84	$83 \cdot 791$	$83 \cdot 789$	83.787	$83 \cdot 785$	2	202
85	$84 \cdot 801$	$84 \cdot 800$	84.798	84.796	3	303
86	$85 \cdot 812$	85.811	85.809	$85 \cdot 808$	4	404
87	$86 \cdot 823$	$86 \cdot 822$	$86 \cdot 821$	$86 \cdot 820$	5	505
88	87.835	$87 \cdot 834$	87.833	87.832	6	606
89	$88 \cdot 847$	$88 \cdot 846$	88.845	88.844	7	707
90	$89 \cdot 859$	$89 \cdot 858$	89.857	89.856	δ	808
91	90.872	90.871	$90 \cdot 870$	$90 \cdot 869$	9	909
92	91.885	$91 \cdot 884$	91.883	91.882		
93	92.898	92.897	92.896	92.895		
94	$93 \cdot 912$	$93 \cdot 911$	$93 \cdot 910$	93.909		
95	$94 \cdot 926$	94.925	94.924	94.924		
96	$95 \cdot 940$	95.939	95.939	$95 \cdot 939$		
97	$96 \cdot 954$	96.954	96.954	$96 \cdot 954$		
98	$97 \cdot 969$	97.969	$97 \cdot 969$	$97 \cdot 969$		
99	98.984	$98 \cdot 981$	98.984	$98 \cdot 984$		

Appendix Table II. (continued).-FFor calculating T when $p t$ and δ are known, employing the formula $T=\left(\frac{5000}{\delta}+50\right)-\sqrt{\left(\frac{5000}{\delta}+50\right)^{2}-\frac{10000 p t}{\delta}}$.

$p t$.	'					
	$\delta=1.54$	$\hat{c}=1 \cdot \tilde{5} 5$.	$\delta=1 \cdot 56$.	$\delta=1.57$.		
100	$100 \cdot 000$	$100 \cdot 000$	$100 \cdot 000$	$100 \cdot 000$		
101	$101 \cdot 016$	$101 \cdot 016$	101.016	$101 \cdot 016$		
102	102.032	102.032	$102 \cdot 032$	$102 \cdot 032$		
103	$103 \cdot 048$	$103 \cdot 049$	103.049	$103 \cdot 049$		
104	$104 \cdot 065$	104.066	104.066	$104 \cdot 066$		
105	$105 \cdot 082$	105.083	$105 \cdot 083$	$105 \cdot 084$		
106	106.099	$106 \cdot 100$	106•101	$106 \cdot 102$		
107	$107 \cdot 117$	107•118	107•119	$107 \cdot 120$		
108	$108 \cdot 135$	$108 \cdot 136$	$108 \cdot 137$	$108 \cdot 138$		
109	$109 \cdot 154$	$109 \cdot 155$	$109 \cdot 156$	$109 \cdot 157$		
110	$110 \cdot 173$	$110 \cdot 174$	$110 \cdot 175$	$110 \cdot 176$		
111	111•192	$111 \cdot 193$	111•194	$111 \cdot 195$	1020	
112	$112 \cdot 211$	$112 \cdot 212$	$112 \cdot 214$	$112 \cdot 214$		
113	$113 \cdot 230$	$113 \cdot 232$	$113 \cdot 234$	$113 \cdot 235$		
114	$114 \cdot 250$	114.252	114.254	$114 \cdot 256$	1	102
115	$115 \cdot 271$	$115 \cdot 273$	115.275	$115 \cdot 277$	2	204
116	116.292	116.294	116.296	$116 \cdot 298$	3	306
117	$117 \cdot 313$	$117 \cdot 315$	$117 \cdot 317$	$117 \cdot 320$	4	408
118	$118 \cdot 334$	$118 \cdot 336$	118.339	$118 \cdot 342$	5	510
119	$119 \cdot 355$	$119 \cdot 358$	$119 \cdot 361$	$119 \cdot 364$	6	612
120	$120 \cdot 377$	$120 \cdot 380$	$120 \cdot 383$	$120 \cdot 386$	7	714
121	$121 \cdot 400$	$121 \cdot 403$	$121 \cdot 406$	$121 \cdot 409$	8	816
122	$122 \cdot 423$	$122 \cdot 426$	$122 \cdot 429$	$122 \cdot 432$	9	918
123	$123 \cdot 446$	$123 \cdot 449$	$123 \cdot 452$	$123 \cdot 455$		
124	$124 \cdot 469$	124.472	$124 \cdot 476$	$124 \cdot 478$		
125	$125 \cdot 492$	125.496	$125 \cdot 500$	$125 \cdot 502$		
126	126.516	$126 \cdot 520$	$126 \cdot 524$	126.526		
127	$127 \cdot 540$	$127 \cdot 544$	127.548	127.551		
128	128.565	$128 \cdot 569$	$128 \cdot 573$	$128 \cdot 576$		
129	$129 \cdot 590$	$129 \cdot 594$	129.598	$129 \cdot 602$		
130	$130 \cdot 616$	$130 \cdot 620$	$130 \cdot 624$	$130 \cdot 628$		
131	$131 \cdot 642$	$131 \cdot 646$	$131 \cdot 650$	$131 \cdot 654$		
132	$132 \cdot 668$	132.673	$132 \cdot 676$	$132 \cdot 680$		
133	$133 \cdot 694$	$133 \cdot 698$	$133 \cdot 703$	$133 \cdot 707$		
134	$134 \cdot 720$	$134 \cdot 725$	$134 \cdot 730$	$134 \cdot 734$		
135	$135 \cdot 747$	$135 \cdot 752$	$135 \cdot 757$	$135 \cdot 762$		
136	136.774	$136 \cdot 780$	$136 \cdot 785$	$136 \cdot 790$		
137	$137 \cdot 802$	$137 \cdot 808$	$137 \cdot 813$	$137 \cdot 818$		
138	$138 \cdot 830$	$138 \cdot 836$	$138 \cdot 841$	$138 \cdot 846$	1030	
139	$139 \cdot 858$	$139 \cdot 864$	$139 \cdot 870$	$139 \cdot 875$		
140	$140 \cdot 887$	$140 \cdot 893$	$140 \cdot 899$	$140 \cdot 904$		
141	141.916	$141 \cdot 922$	141.928	$141 \cdot 934$	1	103
142	$142 \cdot 945$	142.952	142.957	$142 \cdot 964$	2	206
143	143.975	$143 \cdot 982$	$143 \cdot 987$	$143 \cdot 994$	3	309
144	$145 \cdot 005$	$145 \cdot 012$	$145 \cdot 017$	$145 \cdot 025$	4	412
145	$146 \cdot 035$	$146 \cdot 042$	$146 \cdot 048$	$146 \cdot 056$	5	515
146	$147 \cdot 066$	$147 \cdot 073$	$147 \cdot 079$	$147 \cdot 087$	6	618
147	$148 \cdot 097$	$148 \cdot 104$	$148 \cdot 111$	$148 \cdot 118$	7	721
148	$149 \cdot 128$	$149 \cdot 136$	$149 \cdot 143$	$149 \cdot 150$	8	824
149	$150 \cdot 160$	$150 \cdot 168$	$150 \cdot 175$	$150 \cdot 183$	9	927

VOL. OXCIV.- -A .

Appendix Table II. (continued).-For calculating T when $p t$ and δ are known, employing the formula $T=\left(\frac{5000}{\delta}+50\right)-\sqrt{\left(\frac{5000}{\delta}+50\right)^{2}-\frac{10000 p t}{\delta}}$.

$p t$.	T.					
	$\delta=1 \cdot 54$.	$\delta=1.55$.	$\hat{s}=156$.	$\delta=1.57$.		
150	$151 \cdot 192$	$151 \cdot 200$	$151 \cdot 208$	151.216		
151	$152 \cdot 224$	$152 \cdot 232$	$152 \cdot 241$	$152 \cdot 249$		
152	153.257	$153 \cdot 265$	153.274	153.282		
153	$154 \cdot 290$	$154 \cdot 299$	$154 \cdot 308$	$154 \cdot 316$		
154	$155 \cdot 324$	$155 \cdot 333$	$155 \cdot 342$	$155 \cdot 350$		
155	$156 \cdot 358$	156.367	$156 \cdot 376$	$156 \cdot 384$		
156	$157 \cdot 392$	$157 \cdot 401$	$157 \cdot 410$	$157 \cdot 418$		
157	158.426	$158 \cdot 435$	158.444	158.453		
158	$159 \cdot 460$	159.470	159.479	159.488		
159	$160 \cdot 495$	160.505	160.515	160.524		
160	161.531	161.541	161.551	161.560		
161	162.567	162.577	162.587	1625997		
162	163.603	$163 \cdot 613$	$163 \cdot 623$	$163 \cdot 634$		
163	164.639	$164 \cdot 650$	$164 \cdot 660$	$164 \cdot 672$		
164	165.676	$165 \cdot 687$	165.697	165.710		
165	166.713	166.724	166.735	166.748		
166	167.750	1.67 .762	167.773	167.786		
167	168.788	168.800	168.811	168.824		
168	169.826	$169 \cdot 838$	169.850	169.862		
169	$170 \cdot 864$	$170 \cdot 877$	170.889	170.901	1040	
170	$171 \cdot 903$	171.916	171.929	171.940		
171	172.942	$172 \cdot 956$	172.969	172.980	1	104
172	173.982	173.996	174.009	174.021	2	208
173	175.022	175.036	175.049	175.063	3	312
174	176.062	176.076	176.090	$176 \cdot 105$	4	416
175	$177 \cdot 102$	$177 \cdot 117$	$177 \cdot 131$	$177 \cdot 147$	5	520
176	$178 \cdot 143$	$178 \cdot 158$	$178 \cdot 173$	$178 \cdot 189$	6	624
177	$179 \cdot 185$	$179 \cdot 200$	$179 \cdot 215$	$179 \cdot 231$	7	728
178	$180 \cdot 227$	$180 \cdot 242$	$180 \cdot 257$	180.273	8	832
179	$181 \cdot 269$	181.284	181.300	$181 \cdot 316$	9	936
180	$182 \cdot 311$	$182 \cdot 327$	$182 \cdot 343$	$182 \cdot 359$		
181	183.353	$183 \cdot 370$	183.386	$183 \cdot 403$		
182	184.396	184.413	$184 \cdot 430$	$184 \cdot 447$		
183	$185 \cdot 440$	$185 \cdot 457$	$185 \cdot 474$	185.491		
184	186.484	186.501	186.518	186.536		
185	$187 \cdot 528$	$187 \cdot 545$	$187 \cdot 563$	$187 \cdot 581$		
186	188.572	188.590	188.608	188.626		
187	189.617	189.635	189.653	189.671		
188	$190 \cdot 662$	$190 \cdot 680$	$190 \cdot 698$	190.716		
189	191.707	$191 \cdot 726$	191.744	191.763		
190	192.753	192.772	192.790	$192 \cdot 810$		
191	193.799	193.818	193.837	193.857		
192	$194 \cdot 845$	$194 \cdot 865$	$194 \cdot 884$	194.904		
193	$195 \cdot 892$	195.912	$195 \cdot 932$	195.952		
194	196.939	196.960	196.980	$197 \cdot 000$		
195	197.987	198.008	198.028	198.049		
196	199.035	199.056	199.077	199.098		
197	$200 \cdot 084$	$200 \cdot 105$	$200 \cdot 126$	$200 \cdot 147$		
198	$201 \cdot 133$	$201 \cdot 154$	$201 \cdot 175$	$201 \cdot 196$		
199	202-182	202.203	-02.225	$202 \cdot 246$		

Appendix Table II. (continued).--For calculating T when $p t$ and δ are known, employing the formula $\mathrm{T}=\left(\frac{5000}{\delta}+50\right)-\sqrt{\left(\frac{5000}{\delta}+50\right)^{2}-\frac{10000 p t}{\delta} .}$.

$p t$.	T.					
	$\hat{\delta}=1.54$.	$\bar{\delta}=1 \cdot 55$.	$\hat{o}=1.56$.	$\delta=1.57$.		
200	$\begin{aligned} & 203 \cdot 231 \\ & 204 \cdot 281 \end{aligned}$	203.253	203.275		1050	
$\begin{aligned} & 201 \\ & 202 \end{aligned}$		204-303	$204 \cdot 325$			
	205.331	$205 \cdot 353$	$205 \cdot 376$	$\begin{aligned} & 204 \cdot 347 \\ & 205 \cdot 399 \end{aligned}$	105	
203	$206 \cdot 381$	206.404	$206 \cdot 427$	$206 \cdot 451$	2	105
204	$207 \cdot 431$	$207 \cdot 455$	$207 \cdot 479$	$207 \cdot 503$	3	210 315
205	208.482	208.507	208.531	208.555	4	420
206	209.534	$209 \cdot 559$	$209 \cdot 583$	$209 \cdot 607$	5	525
207	210.586	$210 \cdot 611$	$210 \cdot 635$	$210 \cdot 659$	6	630
208	211.638	211.663	211.688	211.712	7	735
209	212.690	$212 \cdot 716$	212.742	212.766	8	840
210	213.743	213.769	213.796	213.820	9	945
211	214.796	214.823	214.850	214.875	9	
212	$215 \cdot 850$	$215 \cdot 877$	215.904	215.930		
213	216.904	216.931	216.958	216.985		
214	217.958	217.986	218.013	218.041		
215	219.013	219.041	219.069	219.097		
216	220.068	$220 \cdot 097$	$220 \cdot 125$	$220 \cdot 153$		
217	$221 \cdot 124$	$221 \cdot 153$	$221 \cdot 182$	$221 \cdot 210$		
218	$222 \cdot 180$	$222 \cdot 209$	$222 \cdot 239$	222.267		
219	223.236	$223 \cdot 266$	$223 \cdot 296$	223.325		
220	$224 \cdot 293$	$224 \cdot 323$	$224 \cdot 353$	224.383		
221	$225 \cdot 350$	$225 \cdot 380$	$225 \cdot 410$	$225 \cdot 441$		
222	$226 \cdot 407$	226.438	$226 \cdot 468$	$226 \cdot 499$		
223	$227 \cdot 464$	227.496	227.527	227.557		
224	228.522	228:554	$228 \cdot 586$	$228 \cdot 616$		
225	$229 \cdot 581$	229.613	$229 \cdot 645$	$229 \cdot 676$		
226	$230 \cdot 640$	$230 \cdot 672$	$230 \cdot 704$	$230 \cdot 736$		
227	$231 \cdot 699$	231.731	231.764	231.797		
228	232.758	232.791	$232 \cdot 824$	232.858		
229	$233 \cdot 817$	$233 \cdot 851$	$233 \cdot 885$	233.919	1	106
230	234.877	234.912	234.946	234.980	2	212
231	235.938	235.973	236.007	$236 \cdot 041$	3	318
232	236.999	$237 \cdot 035$	$237 \cdot 069$	$237 \cdot 103$	4	424
233	238.061	238.097	$238 \cdot 131$	$238 \cdot 165$	5	530
234	$239 \cdot 123$	$239 \cdot 159$	239•194	$239 \cdot 228$	6	636
235	$240 \cdot 185$	$240 \cdot 221$	$240 \cdot 257$	240'291	7	742
236	241.248	$241 \cdot 284$	$241 \cdot 320$	$241 \cdot 355$	8	848
237	$242 \cdot 311$	$242 \cdot 347$	$242 \cdot 384$	$242 \cdot 420$	9	954
238	$243 \cdot 374$	$243 \cdot 411$	$243 \cdot 448$	$243 \cdot 485$		
239	$244 \cdot 437$	$244 \cdot 475$	244.512	244.550		
240	$245 \cdot 501$	$245 \cdot 539$	$245 \cdot 577$	$245 \cdot 615$		
241	246.565	$246 \cdot 604$	$246 \cdot 642$	246.680		
242	$247 \cdot 630$	$247 \cdot 669$	$247 \cdot 707$	$247 \cdot 746$		
243	$248 \cdot 695$	248.734	248.773	248.812		
244	249.760	$249 \cdot 800$	249.839	$249 \cdot 879$		
245	250.826	$250 \cdot 866$	$250 \cdot 906$	$250 \cdot 946$		
246	251.892	251.933	251.973	$252 \cdot 014$		
247	252.958	$253 \cdot 000$	$253 \cdot 041$	253.082		
248	$254 \cdot 025$	$254 \cdot 067$	254-109	$254 \cdot 150$		
249	255.092	$255 \cdot 135$	$255 \cdot 177$	$255 \cdot 219$		

R 2

Appendix Table II. (continued).-For calculating T when $p t$ and δ are known, employing the formula $\mathrm{T}=\left(\frac{5000}{\delta}+50\right)-\sqrt{\left(\frac{5000}{\delta}+50\right)^{2}-\frac{10000 p t}{\delta}}$.

$p t$.	T.					
	$\delta=154$.	$\hat{n}=155$.	$\delta=1.56$.	$\hat{s}=1.57$.		
2 20	$256 \cdot 160$	256.203	256.245	256.288	1070	
251	257.228	257.271	257.314	$257 \cdot 357$		
252	258.296	$258 \cdot 340$	$258 \cdot 383$	$258 \cdot 427$		
253	$259 \cdot 365$	$259 \cdot 409$	$259 \cdot 453$	$259 \cdot 497$		
254	$260 \cdot 434$	$260 \cdot 479$	$260 \cdot 523$	260.568		
255	$261 \cdot 504$	261.549	261.594	$261 \cdot 639$	1	107
256	262.574	$262 \cdot 620$	262.665	262.711	2	214
257	$263 \cdot 644$	263.691	263.737	263.783	3	321
258	$264 \cdot 715$	264.762	$264 \cdot 809$	264.855	4	428
259	265.786	265.833	265.881	265.928	5	535
260	266.857	266.905	266.953	267.001	6	642
261	267.929	267.977	268.025	268.074	7	749
262	269.001	$269 \cdot 050$	269.098	$269 \cdot 148$	8	856
263	270.073	$270 \cdot 123$	$270 \cdot 172$	$270 \cdot 222$	9	963
264	$271 \cdot 146$	271.196	271.246	$271 \cdot 296$		
265	$272 \cdot 219$	$272 \cdot 270$	$272 \cdot 320$	272.370		
266	$273 \cdot 293$	$273 \cdot 344$	$273 \cdot 395$	$273 \cdot 445$		
267	274-367	$274 \cdot 419$	274.470	$274 \cdot 521$		
268	$275 \cdot 442$	$275 \cdot 494$	275.545	275.597		
269	276.517	276.569	276.621	276.673		
270	277.592	$277 \cdot 645$	$277 \cdot 698$	$277 \cdot 750$		
271	$278 \cdot 667$	$278 \cdot 721$	278.755	278.827		
272	$279 \cdot 743$	279.798	279.852	279.905		
273	$280 \cdot 820$	280.875	280.930	$280 \cdot 984$		
274	281.897	281.952	282.008	282.063		
275	282.974	283.029	$283 \cdot 086$	$283 \cdot 142$		
276	284.052	$284 \cdot 107$	284.164	284.221		
277	$285 \cdot 130$	$285 \cdot 186$	285.243	$285 \cdot 300$		
278	$286 \cdot 209$	286.265	$286 \cdot 323$	$286 \cdot 380$	1080	
279	$287 \cdot 288$	$287 \cdot 344$	$287 \cdot 403$	$287 \cdot 460$		
280	$288 \cdot 367$	$288 \cdot 424$	$288 \cdot 483$	288.541		
281	$289 \cdot 4.46$	289.504	289.563	$289 \cdot 622$	1	108
282	$290 \cdot 525$	290.584	$290 \cdot 644$	$290 \cdot 704$	2	216
283	291.605	$291 \cdot 665$	291.726	291.786	3	324
284	292.685	292.746	292.808	292.868	4	432
285	$293 \cdot 766$	$293 \cdot 827$	293.890	293.951	5	540
286	294.847	294.909	294.972	295.034	6	648
287	295.929	$295 \cdot 992$	296.055	$296 \cdot 117$	7	756
288	$297 \cdot 012$	297.075	$297 \cdot 139$	$297 \cdot 201$	8	864
289	298.095	$298 \cdot 158$	$298 \cdot 223$	$298 \cdot 286$	9	972
290	$299 \cdot 178$	$299 \cdot 241$	$299 \cdot 307$	$299 \cdot 371$		
291	$300 \cdot 261$	$300 \cdot 325$	$300 \cdot 391$	$300 \cdot 456$		
292	301-344	$301 \cdot 409$	$301 \cdot 476$	301.541		
293	$302 \cdot 428$	302.494.	302.561	$302 \cdot 627$		
294	$303 \cdot 512$	303:579	$303 \cdot 646$	$303 \cdot 713$		
295	$304: 597$	$304 \cdot 665$	$304 \cdot 732$	$304 \cdot 800$		
296	$305 \cdot 682$	305.751	305.819	$305 \cdot 887$		
297	306.768	306.837	306.906	306.975		
298	$307 \cdot 854$	307-924	307.993	308.063		
299	308.940	$309 \cdot 011$	$309 \cdot 080$	$309 \cdot 151$		

Appendix Table M. (continued).--For calculating T when $p t$ and δ are known, employing the formula $\mathrm{T}=\left(\frac{5000}{\delta}+50\right)-\sqrt{\left(\frac{5000}{\delta}+50\right)^{2}-\frac{10000 p t}{\delta}}$.

	T.					
	$\delta=1.54$.	$\delta=1 \cdot 55$.	$\delta=156$.	$\delta=1.57$.		
300	$310 \cdot 027$	310.098	$310 \cdot 168$	$310 \cdot 240$	1090	
301	$311 \cdot 115$	$311 \cdot 186$	311.257	311-329		
302	$312 \cdot 203$	312.274	$312 \cdot 346$	$312 \cdot 419$		
303	$313 \cdot 290$	$313 \cdot 363$	$313 \cdot 435$	313.509		
304	314.379	314.452	314.525	314.599		
305	$315 \cdot 468$	315.542	$315 \cdot 616$	$315 \cdot 690$	1	109
306	316.557	316.632	316.707	316.781	2	218
307	317.647	317.722	317.798	317.873	3	327
308	318.737	318.813	318.889	318.965	4	436
309	319.827	319.904	319.980	320.057	5	545
310	320.918	320.995	321.072	$321 \cdot 150$	6	654
311	322.010	322.087	$322 \cdot 165$	$322 \cdot 243$	7	763
312	$323 \cdot 102$	323•180	323.258	$323 \cdot 337$	8	872
313	$324 \cdot 194$	324.273	$324 \cdot 352$	$324 \cdot 432$	9	981
314	325.286	$325 \cdot 366$	$325 \cdot 446$	325.527		
315	326.379	$326 \cdot 459$	326.540	326.622		
316	327.472	327.553	327.634	$327 \cdot 717$		
317	328.565	$328 \cdot 647$	328.729	328.812		
318	$329 \cdot 659$	329.742	329.824	329.908		
319	330.754	330.837	$330 \cdot 920$	331.004		
320	331.849	331.933	$332 \cdot 017$	$332 \cdot 101$		
321	332.944	333.029	$333 \cdot 114$	$333 \cdot 199$		
322	334.039	$334 \cdot 125$	$334 \cdot 211$	$334 \cdot 297$		
323	$335 \cdot 135$	$335 \cdot 222$	$335 \cdot 308$	$335 \cdot 395$		
324	336.232	336.319	$336 \cdot 406$	336.494		
325	$337 \cdot 329$	$337 \cdot 417$	$337 \cdot 505$	337.593		
326	338.426	338.515	$338 \cdot 604$	338.693		
327	339.524	$339 \cdot 613$	339.703	339.793		
328	$340 \cdot 622$	340.712	$340 \cdot 802$	340.893	1100	
329	341.720	341.811	$341 \cdot 902$	341.993		
330	342.819	342.911	$343 \cdot 003$	343.094		
331	343.918	344.011	$344 \cdot 104$	$344 \cdot 196$	1	110
332	345.018	$345 \cdot 112$	$345 \cdot 205$	345.298	2	220
333	$346 \cdot 119$	$346 \cdot 213$	$346 \cdot 307$	$346 \cdot 401$	3	330
334	$347 \cdot 220$	$347 \cdot 314$	347.409	347.504	4	440
335	$348 \cdot 321$	348.416	$348 \cdot 511$	348.607	5	550
336	$349 \cdot 422$	349.518	$349 \cdot 614$	$349 \cdot 710$	6	660
337	$350 \cdot 523$	$350 \cdot 620$	$350 \cdot 717$	$350 \cdot 814$	7	770
338	$351 \cdot 625$	351.723	$351 \cdot 820$	351.918	8	880
339	$352 \cdot 728$	$352 \cdot 826$	$352 \cdot 924$	$353 \cdot 022$	9	990
340	353.831	$353 \cdot 930$	$354 \cdot 029$	$354 \cdot 127$		
341	354.934	$355 \cdot 034$	$355 \cdot 134$	$355 \cdot 233$		
342	356.038	$356 \cdot 139$	$356 \cdot 239$	356.340		
343	$357 \cdot 143$	$357 \cdot 244$	$357 \cdot 345$	$357 \cdot 447$		
344	358.248	$358 \cdot 350$	$358 \cdot 452$	358.554		
345	$359 \cdot 353$	$359 \cdot 456$	359.559	359.662		
346	$360 \cdot 458$	360.562	$360 \cdot 666$	$360 \cdot 770$		
347	$361 \cdot 564$	361.668	361.773	361.878		
348	$362 \cdot 670$	362.775	$362 \cdot 880$	362.986		
349	$363 \cdot 777$	$363 \cdot 883$	363.988	364.095		

Appendix Table II. (continued).-For calculating T when $p t$ and δ are known, employing the formula $\mathrm{T}=\left(\frac{5000}{\delta}+50\right)-\sqrt{\left(\frac{5000}{\delta}+50\right)^{2}-\frac{10000 p t}{\delta} .}$.

$p t$.	' ${ }^{\text {' }}$					
	$\delta=1.54$.	$i=1.55$.	$\delta=156$.	$\delta=1.57$.		
350	$364 \cdot 884$	364.991	$365 \cdot 097$	$365 \cdot 205$	1110	
351	365.992	$366 \cdot 100$	366.207	$366 \cdot 316$		
352	$367 \cdot 100$	$367 \cdot 209$	$367 \cdot 317$	$367 \cdot 427$		
353	$368 \cdot 208$	368-318	$368 \cdot 427$	368:538		
354	$369 \cdot 317$	$369 \cdot 428$	369.538	$369 \cdot 649$	1	111
355	$370 \cdot 426$	$370 \cdot 538$	$370 \cdot 649$	370.760	2	222
356	371.536	371.648	371.760	371.871	3	333
357	$372 \cdot 647$	372.759	372.871	372.983	4	444
358	373.758	373.871	373.984	374.097	5	55.5
359	374.869	374.983	$375 \cdot 097$	$375 \cdot 211$	6	666
360	375.980	376.095	$376 \cdot 210$	376.325	7	777
361	$377 \cdot 092$	$377 \cdot 208$	$377 \cdot 324$	$377 \cdot 440$	8	888
362	378.204	$378 \cdot 321$	378.438	378.555	9	999
363	$379 \cdot 316$	$379 \cdot 434$	379.552	379.670		
364	$380 \cdot 429$	$380 \cdot 548$	$380 \cdot 666$	380.785		
365	381.543	381.662	381.781	381.900		
366	382.657	382.777	382.897	383.017		
367	$383 \cdot 772$	383.892	384.013	384.134		
368	$384 \cdot 887$	385.008	$385 \cdot 129$	385.251		
369	$386 \cdot 002$	$386 \cdot 124$	386.246	$386 \cdot 369$		
370	$387 \cdot 118$	387.241	387-364	387.488		
371	388.234	388.358	388.482	$388 \cdot 607$		
372	$389 \cdot 350$	389.475	$389 \cdot 600$	389.726		
373	$390 \cdot 467$	390.593	$390 \cdot 719$	$390 \cdot 845$		
374	391.584	391.711	391.838	391.965		
375	392.702	392.830	392.958	39.086	1120	
376	$393 \cdot 820$	393.949	394.078	$394 \cdot 207$		
377	394.939	$395 \cdot 069$	$395 \cdot 199$	$395 \cdot 329$		
378	396.058	$396 \cdot 189$	$396 \cdot 320$	$396 \cdot 451$		112
379	$397 \cdot 177$	$397 \cdot 309$	$397 \cdot 441$	397.573	2	224
380	398.297	398.430	$398 \cdot 563$	398.696	3	336
381	$399 \cdot 417$	399.551	$399 \cdot 685$	$399 \cdot 819$	4	448
382	400.538	$400 \cdot 673$	$400 \cdot 808$	$400 \cdot 943$	5	560
383	$401 \cdot 659$	401.795	401.931	402.067	${ }_{6}^{6}$	672
384	402.781	$402 \cdot 918$	403.055	$403 \cdot 192$	7	784
385	$403 \cdot 903$	404.041	404-179	4.04-317	8	896
386	$405 \cdot 026$	$405 \cdot 165$	$405 \cdot 304$	$405 \cdot 443$	9	1008
387	$406 \cdot 149$	406.289	$406 \cdot 429$	406.569		
388	$407 \cdot 272$	$407 \cdot 4.13$	407.554	$407 \cdot 695$		
389	408.396	$408 \cdot 538$	$408 \cdot 679$	$4.08 \cdot 822$		
390	409.521	$409 \cdot 663$	$409 \cdot 805$	$409 \cdot 949$		
391	$410 \cdot 646$	410.789	410.932	411.076		
392	411.771	411.915	412.060	$412 \cdot 204$		
393	$412 \cdot 896$	$413 \cdot 041$	$413 \cdot 187$	$413 \cdot 333$		
394	414.021	$414 \cdot 168$	414.315	414.462		
395	$415 \cdot 148$	$415 \cdot 296$	$415 \cdot 444$	415.592		
396	416.275	416.424	416.573	416.722		
397	$417 \cdot 402$	417.552	$417 \cdot 702$	$417 \cdot 852$		
398	$418 \cdot 530$	418.681	418.832	418.983		
399	$419 \cdot 658$	$419 \cdot 810$	419.962	$420 \cdot 114$		

Appendix Table II. (continued).-FFor calculating T when $p t$ and δ are known, employing the formula $T=\left(\frac{5000}{\delta}+50\right)-\sqrt{\left(\frac{5000}{\delta}+50\right)^{2}-\frac{10000 p t}{\delta}}$.

Appendix Table II. (continued).-For calculating T when p^{2} and δ are known: employing the formula $\mathrm{T}=\left(\frac{5000}{\delta}+50\right)-\sqrt{\left(\frac{5000}{\delta}+50\right)^{2}-\frac{10000 p t}{\delta} .}$

Appendix Table III.--Temperatures of Ebullition of Water under varying Pressures. Calculated by Dr. Broch from the observations of Regnault.

Millims.	Tenths of a millimetre										Pro. Pts.	
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.		
730	$98^{\circ} \cdot 8802$	-8840	-8878	-8916	-8954	-8992	-9030	$\cdot 9068$	$\cdot 9106$	$\cdot 9144$		38
731	$\cdot 9182$. 9220	. 9258	. 9295	. 9333	. 9371	-9409	-9447	$\cdot 9485$	-9523		
732	. 9561	. 9599	-9637	- 9674	. 9712	. 9750	. 9788	. 9826	-9864	. 9902	1	$3 \cdot 8$
733	-9939	. 9977	. 00015	. 0053	\bigcirc	. 0128	$\bigcirc 0.66$	$\overline{0204}$. 0242	$\stackrel{0280}{ }$	2	$7 \cdot 6$
734	$99^{\circ} \cdot 0318$. 0355	.0393	$\cdot 0431$. 0469	. 0506	. 0544	-0582	-0620	-0658	3	$11 \cdot 4$
735	$99^{\circ} \cdot 0695$. 0733	$\cdot 0771$	-0808	-0846	. 0884	-0922	-0959	-0997	-1035	5	$19 \cdot 0$
736	$\cdot 1073$	$\cdot 1110$	-1148	$\cdot 1186$	$\cdot 1223$	-1261	-1299	$\cdot 1336$	$\cdot 1374$	-1412	6	$22 \cdot 8$
737	-1449	$\cdot 1487$	-1525	-1562	-1600	-1638	-1675	-1713	$\cdot 1751$	-1788	7	$26 \cdot 6$
738	-1826	$\cdot 1863$	$\cdot 1901$	$\cdot 1939$	$\cdot 1976$	$\cdot 2014$	$\cdot 2051$	$\cdot 2089$	$\cdot 2127$	- 2164	8	$30 \cdot 4$
739	$\cdot 2202$	$\cdot 2239$	$\cdot 2277$	$\cdot 2315$	$\cdot 2352$	$\cdot 2390$	-2427	$\cdot 2465$	$\cdot 2502$	$\cdot 2540$	9	34.2
740	$99^{\circ} \cdot 2577$	$\cdot 2615$	$\cdot 2652$	$\cdot 2690$	$\cdot 2728$	$\cdot 2765$	$\cdot 2803$	-2840	$\cdot 2878$	$\cdot 2915$		37
741	-2953	-2990	-3028	-3065	$\cdot 3102$	$\cdot 3140$	$\cdot 3177$	- 3215	- 3252	-3290		
742	$\cdot 3327$	-3365	-3402	-3440	-3477	$\cdot 3514$	-3552	-3589	-3627	- 3664	1	3.7
743	-3702	-3739	$\cdot 3776$	$\cdot 3814$	-3851	-3889	-3926	-3963	-4001	-4038	2	$7 \cdot 4$
744	$\cdot 4075$	$\cdot 4113$	$\cdot 4150$	$\cdot 4187$	$\cdot 4225$	$\cdot 4262$	$\cdot 4299$	$\cdot 4337$	$\cdot 4374$	-4412	3	$11 \cdot 1$
745	$99^{\circ} \cdot 4449$	$\cdot 4486$	$\cdot 4523$	$\cdot 4561$	$\cdot 4598$	$\cdot 4635$	$\cdot 4673$	-4710	-4747	-4785	5	18.5
746	$\cdot 4822$	$\cdot 4859$	$\cdot 4896$	$\cdot 4934$	-4971	$\cdot 5008$	$\cdot 5045$	$\cdot 5083$	-5120	5157	6	$22 \cdot 2$
747	-5194	-5232	$\cdot 5269$	-5306	$\cdot 5343$	-5381	-5418	$\cdot 5455$	$\cdot 5492$	-5529	7	$25 \cdot 9$
748	-5567	-5604	-5641	. 5678	-5715	-5752	$\cdot 5790$	$\cdot 5827$.5864	-5901	8	$29 \cdot 6$
749	-5938	$\cdot 5975$	-6013	-6050	-6087	-6124	-6161	$\cdot 6198$	$\cdot 6235$	$\cdot 6273$	9	$33 \cdot 3$
750	$99^{\circ} \cdot 6310$	-6347	-6384	-6421	-6458	-6495	-6532	-6569	-6606	$\cdot 6643$		36
751	$\cdot 6681$	$\cdot 6718$	$\cdot 6755$	-6792	-6829	-6866	-6903	-6940	$\cdot 6977$	$\cdot 7014$		
752	$\cdot 7051$	-7088	-7126	-7162	-7199	$\cdot 7236$	$\cdot 7273$	- 7310	-7347	$\cdot 7384$	1	$3 \cdot 6$
753	$\cdot 7421$	$\cdot 7458$	$\cdot 7495$	$\cdot 7532$	$\cdot 7569$	$\cdot 7606$	$\cdot 7643$	$\cdot 7680$	$\cdot 7717$	$\cdot 7754$	2	$7 \cdot 2$
754	$\cdot 7791$	-7828	$\cdot 7865$	-7902	- 7938	$\cdot 7975$	-8012	-8049	-8086	-8123	3	$10 \cdot 8$
755	$99^{\circ} \cdot 8160$	$\cdot 8197$	-8234	-8271	. 8308	. 8344	. 8381	. 8418	. 8455	-8492	5	$18 \cdot 0$
756	$\cdot 8529$	-8566	-8603	-8639	-8676	-8713	-8750	$\cdot 8787$	-8824	-8860	6	$21 \cdot 6$
757	$\cdot 8897$	-8934	-8971	-9008	- 9044	$\cdot 9081$	- 9118	$\cdot 9155$. 9192	-9228	7	$25 \cdot 2$
758	$\cdot 9265$	-9302	-9339	-9376	-9412	-9449	. 9486	$\cdot 9523$. 9559	. 9596	8	$28 \cdot 8$
759	$\cdot 9633$	$\cdot 9670$. 9706	$\cdot 9743$. 9780	$\cdot 9816$	$\cdot 9853$	-9890	. 9927	$\cdot 9964$	9	$32 \cdot 4$
760	$100^{\circ} \cdot 0000$	$\cdot 0037$	$\cdot 0073$	$\cdot 0110$	$\cdot 0147$	-0183	$\cdot 0220$	$\cdot 0257$	-0293	-0330		36
761	$\cdot 0367$	-0403	$\cdot 0440$	$\cdot 0477$	$\cdot 0513$	-0550	. 0587	-0623	-0660	-0696		
762	$\cdot 0733$	-0770	- 0806	-0843	-0880	-0916	-0953	-0989	-1026	-1062	1	$3 \cdot 6$
763	-1099	$\cdot 1136$	$\cdot 1172$	$\cdot 1209$	-1245	-1282	$\cdot 1318$	$\cdot 1355$	-1392	$\cdot 1428$	2	$7 \cdot 2$
764	$\cdot 1465$	$\cdot 1501$	$\cdot 1538$	$\cdot 1574$	$\cdot 1611$	$\cdot 1647$	$\cdot 1684$	$\cdot 1720$	$\cdot 1757$	$\cdot 1793$	3	$10 \cdot 8$
765	$100^{\circ} \cdot 1830$	$\cdot 1866$	$\cdot 1903$	$\cdot 1939$	$\cdot 1976$	$\cdot 2012$	$\cdot 2049$	$\cdot 2085$	$\cdot 2122$	$\cdot 2158$	5	$18 \cdot 0$
766	$\cdot 2194$	-2231	$\cdot 2267$	-2304	$\cdot 2340$	$\cdot 2377$. 2413	. 2450	$\cdot 2486$. 2522	6	$21 \cdot 6$
767	$\cdot 2559$	$\cdot 2595$	- 2632	$\cdot 2668$	-2704	-2741	-2777	. 2814	$\cdot 2850$. 2886	7	$25 \cdot 2$
768	-2923	-2959	-2995	-3032	-3068	- 3105	-3141	-3177	- 3214	- 3250	8	$28 \cdot 8$
769	-3286	-3323	- 3359	-3395	- 3432	$\cdot 3468$	-3504	- 3540	- 3577	- 3613	9	$32 \cdot 4$
770	$100^{\circ} \cdot 3649$	$\cdot 3686$. 3722	-3758	-3794	-3831	-3867	$\cdot 3903$	-3940	$\cdot 3976$		

VOL. CXCIV.-A.

Appendix Table MII. (continued).

Millims.	Tenths of a millimetre.										Pro. Pts.	
	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.		
770	$100^{\circ} \cdot 3649$	-3686	-3722	$\cdot 3758$	$\cdot 3794$	$\cdot 3831$	-3867	$\cdot 3903$	-3940	-3976		6
771	$\cdot 4012$	- 4048	$\cdot 4085$	-4121	$\cdot 4157$	$\cdot 4193$	-4230	-4266	$\cdot 4302$	$\cdot 4338$		
772	$\cdot 4374$	-4411	$\cdot 4447$	$\cdot 4483$	$\cdot 4.519$	-4555	$\cdot 4592$	-4628	$\cdot 4664$	$\cdot 4700$	1	$3 \cdot 6$
773	-4736	$\cdot 4773$	$\cdot 4809$	- 4845	$\cdot 4881$	$\cdot 4917$	-4953	-4989	-5026	-5062	2	$7 \cdot 2$
774	. 5098	.5134	5170	.5206	5242	5278	-3815	-5351	. 5387	-5423	3	10.8
775	-5459	- 5495	.5531	- 5057	-0603	-3639	.5675	-5712	. 5748	-5784	5	$14 \cdot 4$ $18 \cdot 0$
776	-5820	. 5856	. 5892	-5928	. 5964	-6000	-6036	$\cdot 6072$	-6108	-6144	6	$21 \cdot 6$
777	$\cdot 6180$	$\cdot 6216$. 6252	-6288	-6324	-6360	$\cdot 6396$	$\cdot 6432$	$\cdot 6468$	-6504	7	$25 \cdot 2$
778	$\cdot 6540$	$\cdot 6576$	-6612	$\cdot 6648$	$\cdot 6684$. 6720	$\cdot 6756$	-6792	-6828	-6864	8	$28 \cdot 8$
779	$\cdot 6900$	$\cdot 6936$	-6971	$\cdot 7007$	$\cdot 7018$	$\cdot 7079$	-7115	$\cdot 7151$	$\cdot 7187$	$\cdot 7223$	9	$32 \cdot 4$

Appendix Table TV.-For Conversion of Water Pressure into its Equivalent in Mercury. 1 millim. Water $=0.0736$ millim. Mercury.
Interpolated from table given in Landolr and Bobrnstein's 'Physikalisch-chemische Tabellen.'

Note.--Large temperature differences might infuence the last figure of this table.

Water.	Mercury.	Water.	Mercury.
millims.	millims.	millims.	millims.
0.05	0.004	1.55	$0 \cdot 114$
$0 \cdot 10$	$0 \cdot 007$	$1 \cdot 60$	$0 \cdot 118$
$0 \cdot 15$	0.011	1.65	$0 \cdot 121$
$0 \cdot 20$	$0 \cdot 015$	170	$0 \cdot 125$
$0 \cdot 25$	0.018	$1 \cdot 75$	$0 \cdot 129$
$0 \cdot 30$	$0 \cdot 022$	1.80	$0 \cdot 132$
$0 \cdot 35$	$0 \cdot 026$	1.85	$0 \cdot 136$
$0 \cdot 40$	0.029	1.90	$0 \cdot 140$
0.45	0.033	1.95	$0 \cdot 144$
0.50	0.037	$2 \cdot 00$	$0 \cdot 147$
$0 \cdot 55$	0.040	2.05	$0 \cdot 151$
$0 \cdot 60$	0.044	$2 \cdot 10$	$0 \cdot 155$
$0 \cdot 65$	0.048	$2 \cdot 15$	$0 \cdot 158$
$0 \cdot 70$	0.052	$2 \cdot 20$	$0 \cdot 162$
$0 \cdot 75$	0.055	$2 \cdot 25$	$0 \cdot 166$
$0 \cdot 80$	0.059	$2 \cdot 30$	$0 \cdot 169$
$0 \cdot 85$	0.063	$2 \cdot 35$	$0 \cdot 173$
0.90	$0 \cdot 066$	$2 \cdot 40$	$0 \cdot 177$
$0 \cdot 95$	0.070	$2 \cdot 45$	$0 \cdot 180$
$1 \cdot 00$	0.074	2.50	$0 \cdot 184$
1.05	0.077	$2 \cdot 55$	$0 \cdot 188$
1.10	0.081	$2 \cdot 60$	$0 \cdot 191$
$1 \cdot 15$	$0 \cdot 085$	$2 \cdot 65$	$0 \cdot 195$
$1 \cdot 20$	0.088	$2 \cdot 70$	$0 \cdot 199$
1.25	0.092	$2 \cdot 75$	$0 \cdot 202$
$1 \cdot 30$	0.096	$2 \cdot 80$	$0 \cdot 206$
$1 \cdot 35$	0.099	$2 \cdot 85$	$0 \cdot 210$
$1 \cdot 40$	$0 \cdot 103$	$2 \cdot 90$	$0 \cdot 213$
$1 \cdot 45$	$0 \cdot 107$	2.95	$0 \cdot 217$
1.50	$0 \cdot 110$	$3 \cdot 00$	$0 \cdot 221$

Appendix Table V.--Showing the value of $d \equiv \mathrm{~T}-\mathrm{pt}$ corresponding to different values of T near 100°, deduced from

| $\begin{aligned} & \dot{8} \\ & \dot{8} \\ & \stackrel{1}{\\|} \\ & 6 \end{aligned}$ | च-5ै
 $++++++++++$ | |
|---|---|---|---|
| |

 $+++++++t++$ |
| $\begin{gathered} \dot{8} \\ \stackrel{8}{0} \\ \stackrel{1}{\\|} \\ \stackrel{1}{c} \end{gathered}$ | ",
 $++++++++++$ |
| $$ |

 $++++++++++$ |
| 8 $\stackrel{8}{8}$ $\stackrel{0}{2}$ $\stackrel{11}{1}$ ∞ |

 $++++++++++$ |
| 0 10 10 11 10 |

 $++++++++++$ |
| |

 $++++++++++$ |
| $\begin{gathered} \dot{\circ} \\ \stackrel{\circ}{2} \\ \stackrel{\\|}{\\|} \\ i \end{gathered}$ |

 $++++++++++$ |
| $\begin{gathered} \dot{\circ} \\ \stackrel{1}{9} \\ \stackrel{11}{1} \\ -1 \end{gathered}$ | स w

 $++++++++++$ |
| |

 $++++++++++$ |
| $$ |

 $+t++++++++$ |
| $\begin{aligned} & \mathrm{H} 8 \\ & 18 \\ & 18 \\ & -18 \end{aligned}$ |

 $++++++++++$ |
| E |
 |

APPENDIX II. [Added December 1, 1899.]

We think we are justified in adding, in the form of an appendix, some further considerations on the question of the sulphur boiling-point, the results of which we obtained since the date of handing in the paper. On p. 99 of the text are given the observations of Regnaula on the variation of the boiling-point of sulphur with pressure near 760 millims. The formula used by Regnault himself to express the results of his observations over the whole range was of a logarithmic kind, and gave for the pressure 760 millims. the value $448^{\circ} 38$. If, however, we disregard the extreme portions of the range and find a formula to represent only those observations near the normal pressure, we find for this point a value nearly a degree lower.

Taking the four observations quoted in the text, and representing them by a formula

$$
\mathrm{T}=\alpha+b p+c p^{2}
$$

of which the constants a, b, and c are determined by least squares, we find for $p=760$ the value $447^{\circ} 51$, with residuals very much smaller than those given by the logarithmic formula. We are aware that to represent four observations by a formula with three constants is not giving very much latitude for probable errors, but we think, nevertheless, that $447^{\circ} \cdot 5$ gives much more nearly the true result to be deduced from Regnault's experiments than his own much higher figure. Accepting this method of treating his observations, we further find that instead of the value for $d t / d p 0^{\circ} .082$ per millim. as given by the logarithmic formula, we get $0^{\circ} 088$, a value very appreciably higher.

If our determinations of $p t_{s}$ had all been made at 760 millims. pressure, or if this had been the mean pressure of each different series, the value to be taken for $d t / d p$ would have been of no great consequence, but as in each case the mean pressure fell appreciably below this, we thought it desirable to see how much the assumption of the higher value might influence the results of our experiments.

We gave in the text the results of some calculations on the series of sulphur points taken with the Kew platinum thermometers K. 1 and K.3, made with the object of arriving at an independent value for $d t / d p$. Dr. Chree has recently completed for publication an investigation into the behaviour of the Kew platinum thermometers, and their permanence over a considerable period, and finds that, when one or two sources of uncertainty are eliminated, the values we gave for $d t / d p$ for K. 1 and K. 3 are both somewhat too small. He has courteously permitted us to state that the most probable value for this number deducible from the different series of determinations of the sulphur point, which he has worked un, is much more nearly
$0^{\circ} .090$ than $0^{\circ} .082$, agreeing in a remarkable manner with the result we have just deduced from Regnault's experiments.

As the mean pressure of our sulphur point determinations was below 760 millims. in all the series, we thought it of interest to recalculate the results of each set, applying the value 0.088 for $d t / d p$. Combining this with the known value of $d . p t / d t$, we have for $d . p t / d p$ the value 0.0773 at 445°.

The values of $p t_{s}$ from the separate experiments with K. 8 and K.9, are given in the following table :-

K .8.	K .9.
$421 \cdot 58$	$421 \cdot 46$
.56	$\cdot 42$
.52	.49
.53	.49
.56	.44
.57	
.59	$-421 \cdot 460$
$421 \cdot 559$	

These values of $p t_{s}$ only differ very slightly from those previously found.
We next proceed to find for each thermometer from the equivalent values of T and $p t$ given by the comparisons near the sulphur point the T_{s} corresponding to the value of $p t_{s}$ deduced above. We formerly used for this purpose a formula containing the term $\left(p t-p t_{s}\right)$ to the first and second powers, but as there appeared some doubt as to how the result might be affected by stopping short at the second term, in the new calculation we tried several formulæ of different types, and included varying numbers of experiments in the neighbourhood of the sulphur point.

We had already satisfied ourselves that Callendar's formula closely represents the divergence between the platinum and gas scales over the range covered by our experiments. Utilising this formula and including for K. 8 all the experiments between $\mathrm{T}=412^{\circ} .65$ and $\mathrm{T}=455^{\circ} .54$, nine in all, we obtain for the T_{s} corresponding to the $p t_{s}$ above given the value $445^{\circ} \cdot 27$, which is sensibly identical with that previously found. For the two series with K.9, however, we find that while the first series of observations gives a result for $T_{s} 445^{\circ} \cdot 27$, the second series, including the comparisons between $\mathrm{T}=405^{\circ} .93$ and $\mathrm{T}=450^{\circ} .58$, gives $445^{\circ} \cdot 05$, which is appreciably lower than the result given in the text. The discrepancy between the two values furnished by the thermometer K. 9 is lessened by excluding some of the comparisons which are at some distance from the sulphur point, but the mean result is hardly sensibly affected.

We have also made the same kind of calculation of a value for T_{s} from the comparisons with thermometer K.2, though, in this case, none of the comparisons were made at temperatures very near the sulphur point. We find, employing the same
formula to obtain the T_{s}, the value $445^{\circ} \cdot 1$, which is only $0^{\circ} \cdot 1$ lower than the mean previously found from the K. 8 and K. 9 experiments. During this series of comparisons the pressure of the nitrogen in the gas thermometer was sensibly lower than in any of the preceding ones, being only 392 millims. instead of 529 millims.

In view of the uncertainties in the value of $d t / d p$ and those arising from imperfect data as to the expansion of the porcelain at high temperatures, we prefer to suppress the hundredths of a degree from our mean result for the temperature of the boilingpoint of sulphur, and to give for this point the value $\mathrm{T}_{s}=445^{\circ} \cdot 2$ on the scale of the constant volume nitrogen thermometer.

[^0]: * A description of Griffiths' subsequent improvements on the original Kew apparatus, here described, is given by G. M. Clark ('Electrician,' vol. 38, p. 747).

[^1]: * In these experiments, in which a Griffiths' thermoelectric key (described later) is used, in the normal position of the key the galvanometer circuit remains made. When the platinum thermometer is not changing rapidly in temperature, the stability of the galvanometer zero is a good criterion, from which much may be gathered as to the working state of the bridge, and the magnitude of the thermo-currents present. We have reason to believe from our own experience that the use of a well-constructed key of this type considerably facilitates the carrying out of low-resistance measurements, where high accuracy is desired.

[^2]: * The method of forming these equations will be readily seen on reference to the table of coil-values given previously on p. 45.
 \dagger In the opinion of Dr. Benort, whose kindness in giving us his advice with regard to the methods of standardization we here gratefully acknowledge, the best way to obtain in one standardization the requisite number of equations from which the relative values of such a system of coils can be satisfactorily determined, is to adopt a system similar to that employed for standard sets of weights. After careful consideration of these we think the following scheme for a set of fifteen coils would be almost an ideal one. Without counting combinations only involving changes in coils, whose resistance is smali compared to the total in any comparison, we should have in this system several controls for each coil-value

[^3]: * It was afterwards found that the formula used to calculate the table referred to was not strictly correct, but made the external resistance at high temperatures greater than it should have been. As, however, the total current heating at 0° was only $0^{\circ} \cdot 014$, and less than this at higher temperatures, the correction to be applied to the results, on account of the adoption of wrong external resistances, is probably well within the limits of experimental error, especially sceing that the error introduced is already partly compensated by its effect on the fundamental intervals as well as on the platinum temperatures found.

[^4]: * The resolution fixing this was passed by the International Committee on October 15, 1887, and is as follows:-
 "That the International Committee of Weights and Measures adopt as the Normal Thermometric Scale for the International Service of Weights and Measures, the centigrade scale of the Hydrogen Thermometer having as fixed points the temperature of melting ice $\left(0^{\circ}\right)$, and that of the vapour of distilled water in ebullition $\left(100^{\circ}\right)$ under the normal atmospheric pressure ; the hydrogen being taken under the manometric initial pressure of one metre of mercury, i.e., at $\frac{1000}{760}=1 \cdot 3158$ of the atmospheric pressure."

[^5]: * 'Trav. et Mém. du Bureau International,' vol. 6, p. 28.

[^6]: * 'Trav, et Mém. du Bureau International,' vol. 6, p. 52,

[^7]: * As a confirmation of the general accuracy of the methods of standardization, de., adopted in our platinum thermometry, we may mention that on the return of the apparatus from France the constants of thermometer K. 2 were redetermined at Kew by Dr. Cimee and Mr. Hugo, using the improved Cambridge resistance box, which had just been re-calibrated by them. For the platinum temperature of the sulphur point at 760 millims. pressure they found a value differing only $0^{\circ} .01$ from that got at Sèvres, although nearly the whole of the apparatus employed, including the resistance box, leads, and barometer, were of patterns differing materially from those used in France.

[^8]: * This form of protector is due to Heycook and Nevmle, and is described in their paper in 'Trans. Chem. Soc.,' 1895, p. 197.
 \dagger In the use of this apparatus there are several precautions to be observed essential for good results. The liquid sulphur in the Meyer tube must extend to some few centimetres above the base plate of the apparatus. The gas burner should preferably be a large solid-flame bunsen, and the flame should be screened from draughts by asbestos-card or by a number of firebricks surrounding the apparatus. The cones are attached to the thermometer by fine iron wire. The asbestos becomes very hard on cooling, but, if, after use, the adhering sulphur is burnt off, the cones can be rendered sufticiently pliable to serve for several determinations.

[^9]: * Although we do not wish to give the formula we calculated from the observations made at Kew as the outcome of a new determination of $d t / d p$ for sulphur, yet it may be worth while to give an idea of the kind of agreement between the value found and that of Regnault, which we adopted for the reduction of our observations. The experiments with thermometer K. 1 were made between the extremes of pressure 747 and 773 millims., but the majority of them were only very slightly removed from 760 millims. The series with K. 3 was better adapted for the purpose of deducing a formula, the observations being distributed fairly evenly over the range 747 to 769 millims. These two sets of experiments were made by Mr. Hugo, Senior Assistant at Kew Observatory.

 If T_{s} be the boiling-point under 760 millims. pressure, we have for the value at 755 millims. from the formulæ deduced from Regnault, and from thermometers K. 1 and K.3, the values $\left(\mathrm{T}_{8}-41\right)^{\circ}$, $\left(\mathrm{T}_{8} \cdot 43\right)^{\circ}$, and $\left(\mathrm{T}_{s}-\cdot 42\right)^{\circ}$, respectively.
 \dagger For another method of arriving at the value of $p t_{s}$ and the corresponding T_{s} leading to a mean result slightly different from that here given, see Appendix II., added while the paper was in press.

[^10]: * [Footnote added December 1, 1899. -From the study of the different gas seales previously made by one of us, it appears that between 0° and 100° the point of maximum difference between the hydrogen and nitrogen scales is at 40°, where the nitrogen thermometer reads higher by $0^{\circ} 01$. At 100° the difference between the two scales becomes zero by definition, and above that temperature it changes sign and has a value which appears not to exceed $0^{\circ} \cdot 1$ below 600°.
 The scale of the constant volume nitrogen thermometer appears not to be independent of the initial pressure ; if we may judge by the variation of the coefficient $\frac{1}{p_{0}} \frac{d p}{d t}$, which approaches that of hydrogen as the pressure diminishes, we may assume that the difference between the scales of the nitrogen and

[^11]: The adoption of these latter values would raise the result of Caldendar and Griffiths about half a degree.]

 * 'Phil. Mag.,' March, 1898.
 \dagger Loc. cit., p. 293.

